Mouse embryonic fibroblasts (MEFs) are commonly used as feeder cells for the generation of human induced pluripotent stem cells (hiPSCs). However, medical applications of cell derivatives of hiPSCs generated with a MEF feeder system run the risk of having xeno-factor contamination due to long-term cell culturing under an animal factor-containing environment. We developed a new method for the derivation of human fibroblast-like cells (FLCs) from a previously established hiPSC line in an FLC differentiation medium. The method was based on direct differentiation of hiPSCs seeded on Matrigel followed by expansion of differentiating cells on gelatin. Using inactivated FLCs as feeder layers, primary human foreskin fibroblasts were successfully reprogrammed into a state of pluripotency by Oct4, Sox2 Klf4, and c-Myc (OSKM) transcription factor genes, with a reprogramming efficiency under an optimized condition superior to that obtained on MEF feeder layers. Furthermore, the FLCs were more effective in supporting the growth of human pluripotent stem cells. The pluripotency and differentiation capability of the cells cultured on FLC feeder layers were well retained. Our results suggest that FLCs are a safe alternative to MEFs for hiPSC generation and expansion, especially in the clinical settings wherein hiPSC derivatives will be used for medical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2014.12.009 | DOI Listing |
Methods Mol Biol
December 2024
Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.
Isolation of primary keratinocyte stem cells (KSCs) from neonatal mouse epidermis is essential for studying skin physiology and related disorders. Traditional methods often struggle to balance keratinocyte proliferation and differentiation, and although recent advancements using low-calcium culture conditions have improved these techniques, protocols remain scattered. This study presents a streamlined approach to expand mouse KSCs in low-calcium medium (<0.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs.
View Article and Find Full Text PDFEinstein (Sao Paulo)
December 2024
Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
Natural Killer cells are immune leukocytes required for responses against tumor cells and virus-infected cells. In the last decade, natural killer cells have emerged as promising tools in cancer therapy, and clinical studies on patients treated with natural killer cells have revealed increased rates of disease-free survival. In this article, we review results from the major clinical trials that have used natural killer cells for cancer treatment, including their global distribution.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
In Vitro Cell Dev Biol Anim
December 2024
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!