This report comprises the novel usage of polythiophene - ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett-Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box-Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002-0.667ng mL(-1). Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.12.043 | DOI Listing |
Adv Mater
December 2024
Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA.
Organic mixed ionic-electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single-ion injection with little attention to counterion effects. To advance understanding and design strategies toward next-generation OMIEC systems, a series of p-channel carboxylated mixed conductors is investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Division of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden.
Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
The recent interest in developing low-cost, biocompatible, and lightweight bioelectronic devices has focused on organic electrochemical transistors (OECTs), which have the potential to fulfill these requirements. In this study, three types of poly(3-hexylthiophene) (P3HT)-based block copolymers (BCPs) incorporating different insulating blocks (poly(butyl acrylate) (PBA), polystyrene, and poly(ethylene oxide) (PEO)) were synthesized for application in OECTs. The morphological, crystallographic, and electrochemical properties of these BCPs are systematically investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Polymer Science Unit, School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
The optoelectronic properties of polythiophene (PT) graft block copolymers are most important for fabricating optoelectronic devices, and recently, we reported a single-pot atom-transfer radical polymerization (ATRP) technique for preparation of PT graft block copolymers between thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMEM) and pH-responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) from the PT backbone via the "" strategy with an 11 mol % contamination. A "" strategy has been opted to eliminate the contamination from the block copolymer where we synthesized poly(thiophene acetic acid) (P3TAA) followed by the coupling with PDEGMEM--PDMAEMA-Cl, PDMAEMA--PDEGMEM-Cl, and PDMAEMA--PDEGMEM-Cl copolymers, produced separately by the ATRP technique. The polymers were characterized using H NMR, SEC, etc.
View Article and Find Full Text PDFLangmuir
May 2024
Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
Polythiophene (PT) is an important conducting polymer for its outstanding optoelectronic properties. Here, we delineate the self-assembly-driven optoelectronic properties of PT-peptide and PT-polymer conjugates, taking examples from recent literature reports. PT-peptide conjugates made by both covalent and noncovalent approaches are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!