Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Osteoarthritis is a progressive joint disease and a major cause of disability for which no curative therapies are yet available. To identify compounds with potential anti-osteoarthritic properties, in this study, we screened one sesquiterpene, E-caryophyllene, and two monoterpenes, myrcene and limonene, hydrocarbon compounds for anti-inflammatory, anti-catabolic and pro-anabolic activities in human chondrocytes. At non-cytotoxic concentrations, myrcene and limonene inhibited IL-1β-induced nitric oxide production (IC50=37.3μg/ml and 85.3µg/ml, respectively), but E-caryophyllene was inactive. Myrcene, and limonene to a lesser extent, also decreased IL-1β-induced NF-κB, JNK and p38 activation and the expression of inflammatory (iNOS) and catabolic (MMP-1 and MMP-13) genes, while increasing the expression of anti-catabolic genes (TIMP-1 and -3 by myrcene and TIMP-1 by limonene). Limonene increased ERK1/2 activation by 30%, while myrcene decreased it by 26%, relative to IL-1β-treated cells. None of the compounds tested was able to increase the expression of cartilage matrix-specific genes (collagen II and aggrecan), but both compounds prevented the increased expression of the non-cartilage specific, collagen I, induced by IL-1β. These data show that myrcene has significant anti-inflammatory and anti-catabolic effects in human chondrocytes and, thus, its ability to halt or, at least, slow down cartilage destruction and osteoarthritis progression warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2015.01.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!