Bone morphogenetic protein-2 (BMP-2) plays an important role in bone and cartilage formation and is of interest in regenerative medicine. Heparin can interact electrostatically with BMP-2 and thus has been explored for controlled release and potential stabilization of this growth factor in vivo. However, in its natively sulfated state, heparin has potent anticoagulant properties that may limit its use. Desulfation reduces anticoagulant properties, but may impact heparin's ability to interact and protect BMP-2 from denaturation. The goal of this study was to characterize three selectively desulfated heparin species (N-desulfated (Hep(-N)), 6-O,N-desulfated (Hep(-N,-6O)), and completely desulfated heparin (Hep(-))) and determine if the sulfation level of heparin affected the level of BMP-2 bioactivity after heat treatment at 65 °C. BMP-2 bioactivity was evaluated using the established C2C12 cell assay. The resulting alkaline phosphatase activity data demonstrated that native heparin maintained a significant amount of BMP-2 bioactivity and the effect appeared to be heparin concentration dependent. Although all three had the same molecular charge as determined by zeta potential measurements, desulfated heparin derivatives Hep(-N) and Hep(-N,-6O) were not as effective as native heparin in maintaining BMP-2 bioactivity (only ~35% of original activity remained in both cases). These findings can be used to better select desulfated heparin species that exhibit low anticoagulant activity while extending the half-life of BMP-2 in solution and in delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc500565x | DOI Listing |
Tissue Eng Part A
November 2024
Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA.
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles , thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury.
View Article and Find Full Text PDFEssays Biochem
December 2024
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K.
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China.
Unlabelled: Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury.
View Article and Find Full Text PDFGels
July 2024
Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany.
Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!