Intelligent Nanoparticles for Advanced Drug Delivery in Cancer Treatment.

Curr Opin Chem Eng

Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA ; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA ; College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA ; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA.

Published: February 2015

Treatment of cancer using nanoparticle-based approaches relies on the rational design of carriers with respect to size, charge, and surface properties. Polymer-based nanomaterials, inorganic materials such as gold, iron oxide, and silica as well as carbon based materials such as carbon nanotubes and graphene are being explored extensively for cancer therapy. The challenges associated with the delivery of these nanoparticles depend greatly on the type of cancer and stage of development. This review highlights design considerations to develop nanoparticle-based approaches for overcoming physiological hurdles in cancer treatment, as well as emerging research in engineering advanced delivery systems for the treatment of primary, metastatic, and multidrug resistant cancers. A growing understanding of cancer biology will continue to foster development of intelligent nanoparticle-based therapeutics that take into account diverse physiological contexts of changing disease states to improve treatment outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303181PMC
http://dx.doi.org/10.1016/j.coche.2014.12.003DOI Listing

Publication Analysis

Top Keywords

cancer treatment
8
nanoparticle-based approaches
8
cancer
6
treatment
5
intelligent nanoparticles
4
nanoparticles advanced
4
advanced drug
4
drug delivery
4
delivery cancer
4
treatment treatment
4

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!