Mycobacterium tuberculosis (Mtb) defends itself against host immunity and chemotherapy at several levels, including the repair or degradation of irreversibly oxidized proteins (IOPs). To investigate how Mtb deals with IOPs that can neither be repaired nor degraded, we used new chemical and biochemical probes and improved image analysis algorithms for time-lapse microscopy to reveal a defense against stationary phase stress, oxidants, and antibiotics--the sequestration of IOPs into aggregates in association with the chaperone ClpB, followed by the asymmetric distribution of aggregates within bacteria and between their progeny. Progeny born with minimal IOPs grew faster and better survived a subsequent antibiotic stress than their IOP-burdened sibs. ClpB-deficient Mtb had a marked recovery defect from stationary phase or antibiotic exposure and survived poorly in mice. Treatment of tuberculosis might be assisted by drugs that cripple the pathway by which Mtb buffers, sequesters, and asymmetrically distributes IOPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707119PMC
http://dx.doi.org/10.1016/j.chom.2014.12.008DOI Listing

Publication Analysis

Top Keywords

chaperone clpb
8
irreversibly oxidized
8
oxidized proteins
8
stationary phase
8
iops
5
stressed mycobacteria
4
mycobacteria chaperone
4
clpb sequester
4
sequester irreversibly
4
proteins asymmetrically
4

Similar Publications

Ferguson Plot Analysis of Chaperone ClpB from Moderate Halophile.

Protein J

January 2025

Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.

The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.

View Article and Find Full Text PDF

As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium was analyzed immediately after THz irradiation (0.23 W/cm, 130 μm, 15 min) and at 10 min after its completion.

View Article and Find Full Text PDF

ClpB and Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed.

View Article and Find Full Text PDF
Article Synopsis
  • The U-21 strain secretes chaperones, like the ClpL protein, which shows potential as a disaggregase for treating Parkinson's disease.
  • Analysis of the C0965_000195 gene reveals that ClpL can assist in refolding misfolded proteins, particularly luciferases, helping cells manage protein damage.
  • Experiments indicate that both the secreted culture medium from U-21 and purified ClpL can protect proteins from denaturation, suggesting ClpL's key role in the strain’s potential therapeutic benefits.
View Article and Find Full Text PDF

Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!