Preparation of a silver nanoparticle-based dual-functional sensor using a complexation-reduction method.

Phys Chem Chem Phys

Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan.

Published: September 2015

A dual-functional sensor based on silver nanoparticles was synthesized by a two-stage procedure consisting of a low-temperature chitosan-Ag(+) complexation followed by a high-temperature reduction of the complex to form chitosan-capped silver nanoparticles (CS-capped Ag NPs). The surface plasmon resonance (SPR) absorption and fluorescence emission of the silver nanoparticles were influenced by the concentration and degradation time of chitosan, and the temperatures of the complexation and reduction reactions. The SPR absorption band was blue-shifted while the intensities of emission and absorption were decreased after reacting the silver nanoparticles with Hg(2+) ions. The silver nanoparticles reacted with Hg(2+) were characterized by high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and surface-enhanced Raman scattering spectroscopy (SERS). The results suggested that the particle growth and aggregation of the silver nanoparticles were caused by the adsorption of Hg(2+) and deposition of Hg(0) on the nanoparticle surface. Direct correlations of the SPR absorption and fluorescence emission with the concentration of Hg(2+) were useful for quantitative analysis of Hg(2+). It was possible to use the dual-functional silver nanoparticles as a colorimetric and fluorescent sensor for sensitive and selective detection of Hg(2+) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp05012fDOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
28
spr absorption
12
dual-functional sensor
8
absorption fluorescence
8
fluorescence emission
8
hg2+ ions
8
silver
7
nanoparticles
7
hg2+
6
preparation silver
4

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Reduction and amalgamation of mercury in silver nanoparticle suspensions under dark conditions.

Chemosphere

December 2024

Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL33199, United States. Electronic address:

Mercury (Hg) is a global pollutant of concern, and its transport and transformation are controlled by various environmental factors, with aquatic particles being an important driver. Understanding the interactions between silver nanoparticles (AgNPs) and Hg under dark condition is a prerequisite for studying the extent of AgNPs interaction with light and its participation in Hg biogeochemical cycling. Herein, under laboratory experimental setting, it was found that the reduction of divalent Hg (Hg(II)) to gaseous elemental Hg (Hg) by AgNPs readily occurred.

View Article and Find Full Text PDF

Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!