Introduction: Malignant hyperthermia (MH) is a potentially lethal anesthesic complication. Pathological symptoms develop after exposure to triggering substances. It remains uncertain whether cellular alterations pre-exist. Mechanical properties of isolated muscle bundles were examined before and after exposure to a triggering substance.
Methods: With prior written consent, muscle bundles of 12 MH-susceptible (MHS) and 56 MH-nonsusceptible (MHN) individuals were examined before and after exposure to incremental doses of caffeine. Mechanical properties (baseline tension, peak tension, time to peak tension, and relaxation time) were measured. Contraction and relaxation derivatives and contraction-relaxation coupling were calculated and analyzed.
Results: Mechanical properties were not different between the groups before caffeine application. Caffeine increased peak tension in both groups and baseline tension only in MHS muscle bundles; relaxation time/derivative and contraction-relaxation coupling were prolonged.
Conclusions: Cellular changes seen in MH are not pre-existing. Exposure to triggering substance impairs relaxation in MHS muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.24580 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX, 77204, USA.
The Gaussian modulus is a crucial property that influences topological transformations in lipid membranes. However, unlike the bending modulus, estimating the Gaussian modulus has been particularly challenging due to the constraints imposed by the Gauss-Bonnet theorem. Despite this, various theoretical, computational, and experimental approaches have been developed to estimate the Gaussian modulus, though they are often complex, and analytical estimates remain rare.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi, China.
Traditionally, food packaging was used to extend the shelf life of food or to monitor its condition. Inspired by many biological structures found in nature, bio-inspired functional materials for bio-based food packaging have been shown to have significantly improved capabilities over traditional bio-based food packaging materials in various aspects and to attract consumers through novel freshness preservation features. This review synthesizes recent advances in bio-inspired bio-based food packaging materials that mimic the structure of natural organisms with specific functionalities, with examples of specific biomimetics in different enhancement areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!