The GluN2B subunit of NMDA receptors (NMDARs) is an attractive drug target for therapeutic intervention in Parkinson's disease (PD). We have used whole-cell patch clamp recordings in brain slices to examine the contribution of GluN2B and GluN2D to functional NMDARs in the striatum of the unilateral 6-hydroxydopamine-lesioned mouse model of PD. We found that current/voltage relationships of NMDAR-mediated excitatory post synaptic currents were altered in a population of medium spiny projection neurons (MSNs) in the dopamine-depleted striatum. Using antagonists for GluN2B- and GluN2D-containing NMDARs, we found that GluN2B contributes to functional NMDARs in MSNs in the intact striatum and in the striatum of control mice. The function of GluN2B-containing NMDARs is however reduced in MSNs from the dopamine-depleted striatum. GluN2D is absent in MSNs from intact striatum and from control mice, but the contribution of this subunit to functional NMDARs is increased in the dopamine-depleted striatum. These changes in the subunit composition of NMDARs are associated with a decreased protein level of GluN2B and an increased level of GluN2D in the dopamine-depleted striatum. In cholinergic interneurons from the intact striatum and control mice, both GluN2B and GluN2D contribute to functional NMDARs. The functions of GluN2D, and to some extent GluN2B, are reduced in the dopamine-depleted striatum. Our findings demonstrate a cell-type specific reorganization of GluN2B and GluN2D in a mouse model of PD and suggest GluN2D as a potential target for the management of the disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2015.01.007 | DOI Listing |
Sci Adv
November 2024
Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
Behav Brain Res
August 2024
Central Michigan University, Program in Neuroscience, Mt. Pleasant, MI, United States; Central Michigan University, Experimental Psychology Program, Mt. Pleasant, MI, United States. Electronic address:
Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells.
View Article and Find Full Text PDFCell Rep Med
July 2024
Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, PRB422, Nashville, TN 37232, USA. Electronic address:
In rodents with unilateral ablation of neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA induces a progressive increase of behavioral responses, a process known as behavioral sensitization. This sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of these mice, we find that the restoration of arrestin-3 fully rescues behavioral sensitization, whereas its mutant defective in c-Jun N-terminal kinase (JNK) activation does not.
View Article and Find Full Text PDFClin Neurophysiol
May 2024
Department of Psychology (III), Julius-Maximilian-University of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany. Electronic address:
bioRxiv
October 2023
Department of Pharmacology, Vanderbilt University, Nashville, TN 37232.
In rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!