Stathmin1 (STMN1) is a microtubule modulator that is expressed in multiple cancers and correlates with poor survival. We previously demonstrated in vivo safety of bifunctional (bi) shRNA STMN1 bilamellar invaginated vesicle (BIV) and that systemic delivery correlated with antitumor activity. Patients with superficial advanced refractory cancer with no other standard options were entered into trial. Study design involved dose escalation (four patients/cohort) using a modified Fibonacci schema starting at 0.7 mg DNA administered via single intratumoral injection. Biopsy at baseline, 24/48 hours and resection 8 days after injection provided tissue for determination of cleavage product using next-generation sequencing (NGS) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), 5' RLM rapid amplification of cDNA ends (RACE) assay. Serum pharmacokinetics of circulating plasmid was done. Twelve patients were entered into three dose levels (0.7, 1.4, 7.0 mg DNA). No ≥ grade 3 toxic effects to drug were observed. Maximum circulating plasmid was detected at 30 seconds with less than 10% detectable in all subjects at 24 hours. No toxic effects were observed. Predicted cleavage product was detected by both NGS (n = 7/7 patients analyzed, cohorts 1, 2) and RLM RACE (n = 1/1 patients analyzed cohort 3). In conclusion, bi-shRNA STMN1 BIV is well tolerated and detection of mRNA target sequence-specific cleavage product confirmed bi-shRNA BIV mechanism of action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817753 | PMC |
http://dx.doi.org/10.1038/mt.2015.14 | DOI Listing |
Since microRNAs (miRNAs) serve as markers for early cancer diagnosis, it is crucial to develop a novel biosensor to detect miRNAs quickly, sensitively and selectively. Hence, we developed a fluorescence biosensor based on target miRNA-initiated rolling circle amplification (RCA) to generate RCA products with multiple tandem catalytic hairpin DNA templates that trigger primer exchange reactions (PER) which extend short single-strand DNA (ssDNA) primers into long ssDNA. Subsequently, the long ssDNA activates the -cleavage activity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system to cleave a fluorescent reporter chain, enabling ultrasensitive detection of miRNAs through the output fluorescence signal.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy.
Coenzyme Q (CoQ) and closely related compounds with varying isoprenoid tail lengths (CoQ, = 6-9) are biochemical cofactors involved in many physiological processes, playing important roles in cellular respiration and energy production. Liquid chromatography (LC) coupled with single or tandem mass spectrometry (MS) using electrospray (ESI) or atmospheric pressure chemical ionization (APCI) is considered the gold standard for the identification and quantification of CoQ in food and biological samples. However, the characteristic fragmentation exhibited by the CoQ radical anion ([M], / 862.
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.
We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!