Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although many epidemiological studies suggest the beneficial effects of higher cognitive reserve (CR) in reducing age-related cognitive decline and dementia risk, the neural basis of CR is poorly understood. To our knowledge, the present study represents the first electrophysiological investigation of the relationship between CR and neural reserve (i.e., neural efficiency and capacity). Specifically, we examined whether CR modulates event-related potentials associated with performance on a verbal recognition memory task with 3 set sizes (1, 4, or 7 letters) in healthy younger and older adults. Neural data showed that as task difficulty increased, the amplitude of the parietal P3b component during the probe phase decreased and its latency increased. Notably, the degree of these neural changes was negatively correlated with CR in both age groups, such that individuals with higher CR showed smaller changes in P3b amplitude and less slowing in P3b latency (i.e., smaller changes in the speed of neural processing) with increasing task difficulty, suggesting greater neural efficiency. These CR-related differences in neural efficiency may underlie reserve against neuropathology and age-related burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346428 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2014.12.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!