Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ceramidases hydrolyze ceramide into sphingosine and fatty acids. In mammals, ceramidases function as key regulators of sphingolipid homeostasis, but little is known about their roles in plants. Here we characterize the Arabidopsis ceramidase AtACER, a homolog of human alkaline ceramidases. The acer-1 T-DNA insertion mutant has pleiotropic phenotypes, including reduction of leaf size, dwarfing and an irregular wax layer, compared with wild-type plants. Quantitative sphingolipid profiling showed that acer-1 mutants and the artificial microRNA-mediated silenced line amiR-ACER-1 have high ceramide levels and decreased long chain bases. AtACER localizes predominantly to the endoplasmic reticulum, and partially to the Golgi complex. Furthermore, we found that acer-1 mutants and AtACER RNAi lines showed increased sensitivity to salt stress, and lines overexpressing AtACER showed increased tolerance to salt stress. Reduction of AtACER also increased plant susceptibility to Pseudomonas syringae. Our data highlight the key biological functions of ceramidases in biotic and abiotic stresses in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!