UV Sunscreens of Microbial Origin: Mycosporines and Mycosporine- like Aminoacids.

Recent Pat Biotechnol

Laboratorio de Microbiologia Aplicada y Biotecnologia, Instituto en Biodiversidad y Medio Ambiente, INIBIOMA (CONICET - UNComahue), Quintral 1250, 8400 Bariloche, Rio Negro, Argentina.

Published: March 2017

Exposure to ultraviolet radiation (UVR) is harmful to living organisms, causing damage to macromolecules such as DNA, RNA, proteins and lipids. Depending on the wavelength, the injury could be direct or indirect through reactive oxygen intermediates, so it is desirable to find compounds that can reduce both. Many organic chemicals used in commercial sunscreen possess estrogenic activity in vivo. In this report we analyzed recent patents related to UV sunscreens of microbial origin, in particular mycosporines (MYC) and mycosporine-like aminoacids (MAA). Both are promising natural alternatives for both direct (UV-absorption) and indirect (antioxidant) protection, given they show strong photostability and absence of cytotoxicity. It becomes clear that although the search for natural photoprotective molecules is relatively recent, efforts have been invested mainly in marine environments, remaining still many potential photoprotective molecules to find in other type of habitats. Furthermore, unicellular microorganisms have several advantages for the production of metabolites of interest, since they improve the production costs due to its simplicity of culture and easy genetic manipulation. The knowledge of the biosynthesis pathway of MYC and MAA is essential to improve rationally their expression levels. Currently, only the MAA pathway in bacteria has been reported, remaining the MYC pathway unclear. Future perspectives include the heterologous expression of MYC and/or MAA in industrially friendly microorganisms (bacteria and yeast) in order to co-produce different UV-protective molecules and thus cover a broader UV spectrum and simplify the production process.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1872208309666150102104520DOI Listing

Publication Analysis

Top Keywords

sunscreens microbial
8
microbial origin
8
origin mycosporines
8
photoprotective molecules
8
mycosporines mycosporine-
4
mycosporine- aminoacids
4
aminoacids exposure
4
exposure ultraviolet
4
ultraviolet radiation
4
radiation uvr
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.

View Article and Find Full Text PDF

Antibacterial activity of zinc oxide nanoparticles against Shewanella putrefaciens and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Food Res Int

February 2025

Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China. Electronic address:

Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

Microwave-Assisted Synthesized ZnO@APTES Quantum Dots Exhibits Potent Antibacterial Efficacy Against Methicillin-Resistant Without Inducing Resistance.

Int J Nanomedicine

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.

Background: Antibiotic resistance of many bacteria, including Methicillin-resistant (MRSA), has become a major threat to global health. Zinc Oxide Quantum dots (ZnO-QDs) show good antibacterial activity, but most of them are insoluble in water, limiting their application range, and there is a lack of research on drug resistance inducement.

Methods: The water-soluble zinc oxide quantum dots modified by APTES (ZnO@APTES QDs) were prepared by a microwave assisted synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!