Peptides ligands with high affinity and high specificity towards specific targets is catching a good deal of interests in biomedical field. Traditional peptide screening procedure involves selection, sequencing and characterization and each step is time-consuming and labor-intensive. The combination between different analytical methods could provide an integrated plan for efficient peptide screening. We report herein a label-free detection microarray system to facilitate the whole one-bead-one-compound (OBOC) peptide screening process. A microwell array chip with two identical units can trap the candidate peptide beads in one-well-one-bead manner. Peptides on beads were photo-released in situ in the well and partly transferred to two identical chips for Surface Plasmon Resonance imaging (SPRi), and peptide left in the bi-unit microwell array chip was remain for in situ single bead sequencing by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Using the bi-unit imprinted chip system, affinity peptides towards AD protein were efficiently screened out both qualitatively and quantitatively from 10(4) candidates. The method provides a universal solution for high efficiency and high throughput ligands screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2014.12.012 | DOI Listing |
Methods Mol Biol
January 2025
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
This study describes an intramolecular quenching assay to evaluate gamma-secretase (GS) enzyme activity in human dermal cells. The method utilizes a fluorogenic peptide substrate, mimicking a fragment of amyloid precursor protein (APP), in which a quencher suppresses the fluorescence of a fluorophore until enzymatic cleavage occurs, resulting in a measurable increase in fluorescence. This real-time, direct measurement of GS activity allows for precise kinetic analysis using Michaelis-Menten modeling to define Kd and Vmax.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK.
View Article and Find Full Text PDFSci Rep
January 2025
Microbiology Division, Defence Research and Developmental Establishment, Jhansi Road, Gwalior, 474002, India.
Yersinia pestis, a Gram-negative bacterium is the causative agent of the fatal communicable disease plague. The disease had a profound impact on human history. Plague bacteria are usually transmitted to humans through the bite of an infected rat flea.
View Article and Find Full Text PDFN Engl J Med
December 2024
From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).
Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.
Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!