The volatile fractions of Cape gooseberry and blueberry were determined by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GC×GC-TOFMS). The highest amount of alcohol (51.8%), ester (32.8%) and carboxylic acid (6.9%) was in blueberry in comparison with gooseberry and oppositely ketones (14.7%), aldehydes (9.9%) and terpenes (8%) were found in gooseberry. The bioactive compounds and antioxidant capacities were higher in blueberries than in gooseberries. Three dimensional fluorescence emission spectrometry (3D-FL) was applied to determine and to compare experimentally found binding parameters of berries extracts with human serum albumin (HSA). The fluorescence quenching of HSA by polyphenols from berries was a result of the formation of a polyphenol-HSA complex. The binding abilities of berries were highly correlated with the bioactivity of polyphenols and volatile substances. The cluster analysis (CA) and linear discriminant analysis (LDA) was applied to differentiate the berries samples according to their type.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2014.11.061DOI Listing

Publication Analysis

Top Keywords

comprehensive two-dimensional
8
two-dimensional gas
8
gas chromatography
8
berries
5
chromatography three-dimensional
4
three-dimensional fluorometry
4
fluorometry detection
4
detection volatile
4
volatile bioactive
4
bioactive substances
4

Similar Publications

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.

View Article and Find Full Text PDF

Quotient Complex (QC)-Based Machine Learning for 2D Hybrid Perovskite Design.

J Chem Inf Model

January 2025

Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.

View Article and Find Full Text PDF

Two-Dimensional Material-Based Nanofluidic Devices and Their Applications.

ACS Nano

January 2025

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.

Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!