Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

Int J Neuropsychopharmacol

Department of Pharmacology, Medical School of Ribeirão Preto (Drs Lisboa, Gomes, Silva, Cunha, and Resstel, Ms Uliana and Ms Camargo), Department of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto (Dr Joca), and Center for Interdisciplinary Research on Applied Neurosciences, University of São Paulo, Brazil (Drs Lisboa, Gomes, Guimarães, Joca, and Resstel).

Published: January 2015

Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses.

Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated.

Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning.

Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571624PMC
http://dx.doi.org/10.1093/ijnp/pyv005DOI Listing

Publication Analysis

Top Keywords

nitric oxide
40
knockout mice
28
oxide synthase
20
contextual fear
16
fear conditioning
16
endocannabinoid system
16
synthase activity
12
medial prefrontal
12
prefrontal cortex
12
wild-type knockout
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!