The bending stiffness in a homogeneous, isotropic, thin plate is experimentally derived from measurements of coincidence angles extracted from supercritical sound transmission versus frequency measurements. A computer controlled turn table rotates a plate sample and a receiver array, placed in the near field of the plate. The array is used to track the transmitted sound through the plate, generated by a far-field stationary source, using beam forming. The array technique enables measurement of plates measuring only one wavelength in width. Two examples are used for proof of concept, including an aluminum plate in air and an alumina plate under water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4904522 | DOI Listing |
Comput Biol Chem
December 2024
Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland; Biocenter Oulu, University of Oulu, PO Box 5400, Oulu 90014, Finland. Electronic address:
Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity-understanding how DNA sensor proteins recognize certain SSB types is crucial for studies of the DNA repair pathways. During repair of damaged DNA the final SSB that is to be ligated contains a 5'-phosphorylated end. The present work employed molecular simulation (MD) of DNA with a phosphorylated break in solution to address multiple questions regarding the dynamics of the break site.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Current limitations in implant design often lead to trade-offs between minimally invasive surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical properties and volume change in response to temperature changes, enabling minimally invasive and personalized surgery.
View Article and Find Full Text PDFMed Acupunct
October 2024
Department of Family Medicine, West Virginia University, Morgantown, West Virginia, USA.
Objective: Stiff person syndrome (SPS) is a rare neurological disorder. Treatments are limited, and non-pharmacologic therapies are recommended based on symptomatology. A G2P2002 post-menopausal 60-year-old female with hypertension, obesity, and type II diabetes, and SPS secondary to a paraneoplastic process cause by endometrioid ovarian adenocarcinoma who presented to acupuncture clinic seeking treatment for SPS and its sequela.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!