The limited availability of comprehensive data for Persistence, Bioaccumulation and Toxicity (PBT) of chemicals is a serious hindrance to the assignment of compounds to the categories of PBT and vPvB; REACH regulation requires authorization for the use of such chemicals, and additionally plans for safer alternatives. In the context of screening and priority-setting tools for PBT-assessment, the cumulative PBT Index model, implemented in QSARINS (QSAR-INSUBRIA), new software tool for the development and validation of multiple linear regression QSAR models, offers a new holistic approach for the identification of chemicals with cumulative PBT properties directly from their molecular structure. In this study the Insubria PBT Index in QSARINS is applied to the screening and prioritization of various data sets, containing a large variety of chemicals of heterogeneous molecular structure, previously screened by various authors by different methods, for their potential PBT behavior. Particular attention is devoted to the model Applicability Domain, using different approaches such as Descriptor Range, Leverage, and Principal Component Analysis (PCA) of the modeling molecular descriptors, in order to discriminate between interpolated and extrapolated predictions. The results of this screening, which is based only on the molecular structure features and is not dependent on single threshold values for P, B and T, are compared with those obtained by the on-line US-EPA PBT Profiler. Good agreement between the various approaches is found, supporting the utility of a consensus approach in priority-setting studies. The main discrepancies are highlighted and commented on. Moreover, a priority list containing the most hazardous compounds identified in agreement between the two tools is drafted. The PBT Index, implemented in QSARINS, which was demonstrated to be a practical, precautionary and reliable screening tool for PBT-behavior directly from the molecular structure, can be usefully applied for focusing experimental studies, and even before chemical synthesis, in a "benign by design" approach of safer alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2014.12.012 | DOI Listing |
J Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!