Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Plant phenomics, the collection of large-scale plant phenotype data, is growing exponentially. The resources have become essential component of modern plant science. Such complex datasets are critical for understanding the mechanisms governing energy intake and storage in plants, and this is essential for improving crop productivity. However, a major issue facing these efforts is the determination of the quality of phenotypic data. Automated methods are needed to identify and characterize alterations caused by system errors, all of which are difficult to remove in the data collection step and distinguish them from more interesting cases of altered biological responses.
Results: As a step towards solving this problem, we have developed a coarse-to-refined model called dynamic filter to identify abnormalities in plant photosynthesis phenotype data by comparing light responses of photosynthesis using a simplified kinetic model of photosynthesis. Dynamic filter employs an expectation-maximization process to adjust the kinetic model in coarse and refined regions to identify both abnormalities and biological outliers. The experimental results show that our algorithm can effectively identify most of the abnormalities in both real and synthetic datasets.
Availability And Implementation: Software available at www.msu.edu/%7Ejinchen/DynamicFilter .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btu854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!