Purpose: Largazole is a potent class I-selective HDACi natural product isolated from the marine cyanobacteria Symploca sp. The purpose of this study was to test synthetic analogs of Largazole to identify potential scaffold structural modifications that would improve the drug-like properties of this clinically relevant natural product.
Methods: The impact of Largazole scaffold replacements on in vitro growth inhibition, cell cycle arrest, induction of apoptosis, pharmacokinetic properties, and in vivo activity using a xenograft model was investigated.
Results: In vitro studies in colon, lung, and pancreatic cancer cell lines showed that pyridyl-substituted Largazole analogs had low-nanomolar/high-picomolar antiproliferative activity, and induced apoptosis and cell cycle arrest at concentrations equivalent to or lower than the parent compound Largazole. Using IV bolus delivery at 5 mg/kg, two compartmental pharmacokinetic modeling on the peptide isostere analog of Largazole indicated improved pharmacokinetic parameters. In an A549 non-small cell lung carcinoma xenograft model using a dosage of 5 mg/kg administered intraperitoneally every other day, Largazole, Largazole thiol, and Largazole peptide isostere demonstrated tumor growth inhibition (TGI%) of 32, 44, and 66%, respectively. Largazole peptide isostere treatment was statistically superior to control (p = 0.002) and to Largazole (p = 0.006). Surprisingly, tumor growth inhibition was not observed with the potent pyridyl-based analogs.
Conclusions: These results establish that replacing the depsipeptide linkage in Largazole with an amide may impart pharmacokinetic and therapeutic advantage and that alternative prodrug forms of Largazole are feasible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368451 | PMC |
http://dx.doi.org/10.1007/s00280-015-2675-1 | DOI Listing |
J Am Chem Soc
January 2025
Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.
SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.
View Article and Find Full Text PDFChem Sci
October 2024
Department of Chemistry, Iowa State University Ames IA 50011 USA
Amidines are an isostere of the amide bond and are completely unexplored in peptide secondary structure. This study marks the first investigation of the structural implications of amidines in folded helices. Amidines were found to engage in hydrogen-bonding interactions that are compatible with helical structure.
View Article and Find Full Text PDFJ Org Chem
October 2024
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
Thioimidates are a precursor and synthetic branch point to access either thioamide or amidine isosteres of the native amide (peptide bond). Previous syntheses of thioimidate-containing peptides were prone to side reactivity and required slow, cumbersome steps that were difficult to monitor. We describe a more efficient approach to directly couple thioimidates onto the growing peptide chain.
View Article and Find Full Text PDFJ Org Chem
October 2024
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
We have developed a high yielding synthesis of indolizine and directly elaborated the molecule into three optically active indolizinylalanine regioisomers. The protocols exploit metal catalyzed coupling of indolizinyl-halides with organozinc reagents derived from carbamoylated iodoalanine esters. The scalable protocols provide products in a form amenable to solid-phase peptide synthesis (SPPS).
View Article and Find Full Text PDFJ Med Chem
September 2024
Novartis Biomedical Research, Basel CH-4002, Switzerland.
IL-17, a pro-inflammatory cytokine produced mainly by Th17 cells, is involved in the immune response to fungal and bacterial infections, whereas its aberrant production is associated with autoimmune and inflammatory diseases. IL-17 blocking antibodies like secukinumab (Cosentyx) have been developed and are used to treat conditions like psoriasis, psoriatic arthritis, and ankylosing spondylitis. Recently, the low molecular weight IL-17 inhibitor LY3509754 entered the clinic but was discontinued in Phase 1 due to adverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!