Aims: Methylation of CpG island promoters is a prototypical epigenetic mechanism to stably control gene expression. The aim of this study was to elucidate the contribution of aberrant promoter DNA methylation in pathological endothelial to mesenchymal transition (EndMT) and subsequent cardiac fibrosis.
Methods And Results: In human coronary endothelial cells, TGFβ1 causes aberrant methylation of RASAL1 promoter, increased Ras-GTP activity, and EndMT. In end-stage failing vs. non-failing human myocardium, increased fibrosis was associated with significantly increased RASAL1 promoter methylation, decreased RASAL1 expression, increased Ras-GTP activity, and increased expression of markers of EndMT. In mice with pressure overload due to ascending aortic constriction, BMP7 significantly reduced RASAL1 promoter methylation, increased RASAL1 expression, and decreased EndMT markers as well as decreased cardiac fibrosis. The ten eleven translocation (TET) family enzyme TET3, which demethylates through hydroxymethylation, was significantly decreased in fibrotic mouse hearts, restored with BMP7, and BMP7 effects were absent in coronary endothelial cells with siRNA knockdown of TET3.
Conclusion: Our study provides proof-in-principle evidence that transcriptional suppression of RASAL1 through aberrant promoter methylation contributes to EndMT and ultimately to progression of cardiac fibrosis. Such aberrant methylation can be reversed through Tet3-mediated hydroxymethylation, which can be specifically induced by BMP7. This may reflect a new treatment strategy to stop cardiac fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvv015 | DOI Listing |
Int J Mol Sci
October 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that was expressed in the spleen of disease-resistant Japanese flounder () individuals compared with disease-susceptible individuals, and the results were also verified by qPCR.
View Article and Find Full Text PDFBMC Cancer
August 2024
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
Background: Patients with choriocarcinoma (CC) accompanying chemoresistance conventionally present a poor prognosis. Whether ras protein activator like-1 (RASAL1) functions as a tumor promoter or suppressor depends on tumor types. However, the role of RASAL1 in process of chemoresistance of CC and underlying molecular mechanism remain elusive.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
March 2024
The Second Affiliated Hospital of Nanchang University, The Department of Obstetrics and Gynecology, Nanchang, Jiangxi, China.
Background: Endometrial-derived stem cells are key players in endometriosis (EMs) pathogenesis, while the mechanism involved is still unclear. Herein, the role and regulatory mechanism of endometriotic mesenchymal stem cells (ecto-MSCs) in regulating fibrosis during EMs progression were investigated.
Methods: The mRNA and protein expressions were assessed using qRT-PCR, western blot, and immunofluorescence.
Front Genet
May 2023
Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aimed to explore cell type level expression quantitative trait loci (eQTL) in adenocarcinoma at the gastroesophageal junction (ACGEJ) and identify susceptibility and prognosis markers. Whole-genome sequencing (WGS) was performed on 120 paired samples from Chinese ACGEJ patients. Germline mutations were detected by GATK tools.
View Article and Find Full Text PDFEBioMedicine
June 2023
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!