Prenylation of protein (farnesylation and geranylgeranylation) is involved in several human cancers, such as pancreatic, colon, and acute myeloid leukemia as well as Hutchinson-Gilford progeria syndrome (HGPS), a genetic disease that is associated with premature aging for children. Current biochemical methods are not very efficient in identifying and differentiating large-scale prenylations in vivo or in vitro. There are limited methods available for large-scale detection of prenylated proteins using mass spectrometry and no methods currently available which can distinguish farnesylation and geranylgeranylation modification in a single experimental setup. In this study, a simple and novel method for detection and distinction of large-scale prenylated peptides using mass spectrometry-cleavable approaches was developed. The method utilizes simple chemistry on the prenyl group and cleavable properties of a sulfoxide group in the gas phase to produce a signature mass spectrum during tandem mass spectrometric events. The characteristic masses lost from the modified prenylated peptides distinguished the types of prenylation. We also introduced epoxy groups in the prenylation sites of the proteins to make them more hydrophilic and enrichable from complex samples. Stability of the epoxide group was also studied under liquid chromatography-mass spectrometry (LC-MS) conditions. The proof-of-concept of this method was established using prenylated peptides which mimicked the prenyl motifs in the proteins. We believe this method will advance the identification and differentiation of the types of prenylation in proteins in large-scale studies and will improve significantly our knowledge of the mechanism of cancer, cancer treatments, and diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac503794sDOI Listing

Publication Analysis

Top Keywords

prenylated peptides
16
mass spectrometry
8
identification differentiation
8
farnesylation geranylgeranylation
8
types prenylation
8
mass
5
prenylated
5
spectrometry cleavable
4
cleavable strategy
4
strategy identification
4

Similar Publications

The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes.

View Article and Find Full Text PDF

Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532.

J Nat Prod

January 2025

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal.

Genome mining has emerged as an important tool for the discovery of natural products and is particularly effective for the swift identification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Among RiPPs, cyanobactins have gained attention due to their diverse structures and bioactive properties. Here, we explored the Microcoleaceae cyanobacterium LEGE 16532 strain and identified the biosynthetic gene cluster (BGC), which was predicted to encode cyanobactin-like molecules.

View Article and Find Full Text PDF

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF

The rufomycins are a family of nonribosomal cyclic peptides isolated from the deep sea-dwelling Herein, we describe the total synthesis of six congeners in the rufomycin family. Synthesis was achieved through a modular solid-phase strategy, incorporating synthetic nonproteinogenic amino acids: l-2-amino-4-hexenoic acid, prenyl-l-tryptophan (and related ()-epoxide), and -methyl-δ-hydroxy-l-leucine. Following macrolactamization, these peptides were further diversified through late-stage oxidation and secondary cyclization to furnish a library of six synthetic natural products.

View Article and Find Full Text PDF

In order to make more rational use of , a systematic separation from the roots of was performed in the current study. The investigation of chemical constituents resulted in the isolation of a rare prenylated isoflavone-quinone, fleminquinone A (), together with four known analogues (). Their structures were established by extensive physical and spectroscopic data analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!