Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel.

Int J Pharm

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Soochow University, Suzhou 215123, China. Electronic address:

Published: March 2015

In the present study, we constructed a tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier containing paclitaxel (FA-BSA-LC/DOPE-PTX), by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and oleic acid as pH-sensitive components into the formulation of lipid core and then coating with folic acid modified bovine serum albumin (FA-BSA) for tumor targeting activity. In vitro drug release study demonstrated that paclitaxel (PTX) was released from FA-BSA-LC/DOPE in a pH-dependent manner. The vitro cytotoxicity assays showed that all the blank nanocarriers were nontoxic. However, MTT assay showed that FA-BSA-LC/DOPE-PTX was highly cytotoxic. Cellular uptake experiments analyzed with flow cytometry and laser scan confocal microscope (LSCM) revealed that FA-BSA-LC/DOPE was taken up in great amount via folate receptor-mediated endocytosis and pH-sensitive release of drug to cytoplasm. Furthermore, the study of intracellular drug release behavior demonstrated that the FA-BSA-LC/DOPE escaped from lysosomes and released drug into cytoplasm. The in vivo targeting activity showed that the nanocarrier selectively targeted tumor and had long residence time for BSA layer increased the stability in blood. Moreover, FA-BSA-LC/DOPE-PTX produced very marked anti-tumor activity in tumor-bearing mice in vivo. Therefore, FA-BSA-LC/DOPE as biocompatible, tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier is a promising system for effective intracellular delivery of PTX to tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2015.01.036DOI Listing

Publication Analysis

Top Keywords

tumor-targeting ph-sensitive
12
ph-sensitive lipoprotein-mimic
12
lipoprotein-mimic nanocarrier
12
intracellular delivery
8
targeting activity
8
drug release
8
drug cytoplasm
8
nanocarrier
4
nanocarrier targeted
4
targeted intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!