High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299094PMC
http://dx.doi.org/10.3390/s141223933DOI Listing

Publication Analysis

Top Keywords

wind tunnel
16
rolling targets
12
measurement method
8
high-speed rolling
8
supersonic wind
8
markers layout
8
angle precision
8
pose
5
method
5
high-speed
5

Similar Publications

Air-source heat pumps are popular in buildings to provide cooling and heating. However, how the air discharged by air-source heat pump outdoor units affects the dispersion of air pollutants in urban street canyons remains poorly understood. This study used coupled simulations to examine the effects that air-source heat pump outdoor units had on vehicle-induced indoor and outdoor air pollution in an urban street canyon and how these effects varied based on the arrangement of outdoor units or the presence of building envelope components (e.

View Article and Find Full Text PDF

The paper outlines the development and optimization of an aerodynamic device for a semi-trailer truck model to reduce aerodynamic drag force. The optimization procedure involves the selection of a basic aerodynamic device shape, using airfoil profiles, and refining its shape and position through established optimization techniques like Full Factorial Design and Response Surface Method within the Design of Experiments framework. The test subject is a 1:10 scale model of the semi-trailer truck.

View Article and Find Full Text PDF

This article presents the results of experimental studies on the influence of the geometry of high-voltage plasma actuator electrodes on the change in flow in the boundary layer and their influence on the change in the lift coefficient. The plasma actuator used in the described experimental studies has a completely different structure. The experimental model of the plasma actuator uses a large mesh ground electrode and different geometries of the high-voltage electrodes, namely copper solid electrodes and mesh electrodes (the use of mesh electrodes, large GND and HV is a new solution).

View Article and Find Full Text PDF

Optimizing the installation parameters of photovoltaic panels in a photovoltaic array to reduce dust accumulation, thereby enhancing their power generation, is a crucial research topic in the construction of solar power stations in desert regions. Utilizing a series of wind tunnel experiments on a photovoltaic array comprising four equally sized panels, this study assessed how variations in tilt angle, mounting height, spacing, and incoming flow direction influence both the accumulation mass of dust and the particle size distribution in a photovoltaic array. The results indicate that the dust accumulation on the first panel exponential growth with increasing tilt angle, incoming flow angles, and height, while subsequent panels displayed a trend of initial increase followed by a decrease, with a maximum increasing ratio achieved at specific installation configurations, the difference of dust mass on each panel can even be several times.

View Article and Find Full Text PDF
Article Synopsis
  • This study used wind tunnel experiments to analyze wind speed distribution around two high-rise buildings on a tropical urban campus.
  • The vertical wind profiles were affected by wind direction, building arrangement, and geometry, revealing how these factors influenced wind flow interactions.
  • Findings indicated that building layout significantly impacts wind speeds at canopy height, with vortex influences extending to distances proportional to each building's height.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!