Melt-spun fibers were made from poly(ε-caprolactone) (PCL) coalesced from stoichiometric inclusion complex crystals formed with host urea. Melting and crystallization behaviors, mechanical properties, and the birefringence of undrawn and cold-drawn fibers were investigated. Undrawn coalesced PCL fibers were observed to have 500-600% higher moduli than undrawn as-received (asr) PCL fibers and a modulus comparable to drawn asr PCL fibers. Drawn coalesced PCL fibers have the highest crystallinity, orientation, and 65% higher moduli than drawn asr PCL fibers. Drawn coalesced PCL fibers have only a 5% higher crystallinity than drawn asr PCL fibers, yet they have 65% higher moduli and lower elongation at break values. Clearly, the intrinsic alignment of the coalesced polymers is the reason for their higher moduli and lower elongation, as confirmed by the birefringence observed in drawn coalesced and asr-PCL fibers. The improved mechanical properties of coalesced PCL fibers make them a better candidate for use in tissue engineering as scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm501799y | DOI Listing |
J Mater Chem B
January 2025
Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).
View Article and Find Full Text PDFDiscov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!