The aim of this work was to examine agronomic, compositional, and functional changes in rice (Oryza sativa L. cv. Nipponbare) grains from plants grown under low-to-moderate salinity stress in the greenhouse. Plants were grown in sodium chloride-containing soil (2 or 4 dS/m(2) electrical conductivity), which was imposed 4-weeks after transplant (called Seedling EC2 and EC4) or after the appearance of the anthers (called Anthesis EC2 and EC4). The former simulates field conditions while the latter permits observation of the isolated effect of salt on grain filling processes. Key findings of this study are the following: (i) Plants showed adaptive responses to prolonged salt treatment with no negative effects on grain weight or fertility. Seedling EC2 plants had more panicles and enhanced caryopsis dimensions, while surprisingly, Seedling EC4 plants did not differ from the control group in the agronomic parameters measured. (ii) Grain starch increased in Seedling EC4 (32.6%) and Anthesis EC2 (39%), respectively, suggesting a stimulatory effect of salt on starch accumulation. (iii) The salinity treatment of 2 dS/m(2) was better tolerated at anthesis than the 4 dS/m(2) treatment as the latter led to reduced grain weight (28.8%) and seed fertility (19.4%) and compensatory increases in protein (20.1%) and nitrogen (19.8%) contents. (iv) Although some salinity treatments led to changes in starch content, these did not alter starch fine structure, morphology, or composition. We observed no differences in reducing sugar and amylose content or starch granule size distribution among any of the treatments. The only alterations in starch were limited to small changes in thermal properties and glucan chain distribution, which were only seen in the Anthesis EC4 treatment. This similarity of compositional and functional features was supported by multivariate analysis of all variables measured, which suggested that differences due to treatments were minimal. Overall, this study documents the specific response of rice under defined conditions, and illustrates that the plasticity of plant response to mild stress is complex and highly context-dependent, even under greenhouse conditions in which other potential environmental stress impacts are minimized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf503948p | DOI Listing |
Mar Biotechnol (NY)
January 2025
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.
In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou , Henan, 450002, China.
Background: WRKY transcription factors constitute one of the largest families of plant transcriptional regulators, playing pivotal roles in plant responses to biotic and abiotic stresses, as well as in hormonal signaling and secondary metabolism regulation. However, a comprehensive analysis of the WRKY family in Carthamus tinctorius (safflower) is lacking. This study aims to identify and characterize WRKY genes in safflower to enhance understanding of their roles in stress responses and metabolic regulation.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.
Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!