Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.90.062921 | DOI Listing |
Cureus
December 2024
Emergency, Hospital de Braga, Braga, PRT.
Pericardial effusion refers to the accumulation of fluid within the pericardial sac, the double-layered membrane surrounding the heart. It can be caused by various medical conditions and may lead to serious complications if not diagnosed and managed promptly. Point-of-care ultrasound (POCUS) has emerged as a valuable tool in the clinical evaluation of pericardial effusions, offering real-time visualization and aiding in the assessment of its size, characteristics, and potential hemodynamic impact.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
Background: The G protein-coupled receptor 55 (GPR55) is part of an expanded endocannabinoid system (ECS), and plays a pro-tumorigenic role in different cancer models, including pancreatic cancer. Next to cancer cells, various cells of the immune tumor microenvironment (TME) express receptors of the ECS that critically determine tumor growth. The role of GPR55 in cancer cells has been widely described, but its role in the immune TME is not well understood.
View Article and Find Full Text PDFVirol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!