Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Algorithms to find communities in networks rely just on structural information and search for cohesive subsets of nodes. On the other hand, most scholars implicitly or explicitly assume that structural communities represent groups of nodes with similar (nontopological) properties or functions. This hypothesis could not be verified, so far, because of the lack of network datasets with information on the classification of the nodes. We show that traditional community detection methods fail to find the metadata groups in many large networks. Our results show that there is a marked separation between structural communities and metadata groups, in line with recent findings. That means that either our current modeling of community structure has to be substantially modified, or that metadata groups may not be recoverable from topology alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.90.062805 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!