We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.90.062202 | DOI Listing |
Sports (Basel)
January 2025
Department for Life Quality Studies, University of Bologna, 40100 Bologna, Italy.
: This study aims to determine the propulsive force and effective arm area contributed by the propulsion through the dynamic balance (power balance) between drag and propulsive power in swimming crawl performance. : Ten male swimmers participated in the study. The athletes conducted the crawl trials at a constant velocity using only the upper limbs.
View Article and Find Full Text PDFSports Med
January 2025
Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.
Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.
Environ Res
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China. Electronic address:
The anammox dynamic membrane bioreactor (DMBR) exhibits potential for efficient nitrogen removal via anammox processes. The functional membrane biofilm in the anammox DMBR significantly enhances nitrogen removal, ensuring robust operation. Nevertheless, ecological mechanisms underpinning the nitrogen removal function of the membrane biofilm remain unclear.
View Article and Find Full Text PDFSoft Matter
January 2025
Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
The adsorption of charged clay nanoplatelets plays an important role in stabilizing emulsions by forming a barrier around the emulsion droplets and preventing coalescence. In this work, the adsorption of charged clay nanoplatelets on a preformed Latex microsphere in an aqueous medium is investigated at high temporal resolution using optical tweezer-based single-colloid electrophoresis. Above a critical clay concentration, charged clay nanoplatelets in an aqueous medium self-assemble gradually to form gel-like networks that become denser with increasing medium salinity.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia.
The paper outlines the development and optimization of an aerodynamic device for a semi-trailer truck model to reduce aerodynamic drag force. The optimization procedure involves the selection of a basic aerodynamic device shape, using airfoil profiles, and refining its shape and position through established optimization techniques like Full Factorial Design and Response Surface Method within the Design of Experiments framework. The test subject is a 1:10 scale model of the semi-trailer truck.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!