Andrographolide (1) is a diterpenoid lactone with an α,β-unsaturated lactone group that inhibits NF-κB DNA binding. Andrographolide reacts with the nucleophilic Cys62 of NF-κB p50 through a Michael addition at the Δ(12(13)) exocylic double bond to form a covalent adduct. Using computer docking, site-directed mutagenesis, and mass spectrometry, the noncovalent interactions between andrographolide and additional binding site residues other than Cys62 were found to be essential for the covalent incorporation of andrographolide. Furthermore, the addition reaction of andrographolide on Cys62 was highly dependent on the redox conditions and on the vicinity of nearby, positively charged Arg residues in the conserved RxxRxR motif. The reaction mechanisms of several of the analogues were determined, showing that 14-deoxy-11,12-didehydroandrographolide (8) reacts with NF-κB p50 via a novel mechanism distinct from andrographolide. The noncovalent interaction and redox environment of the binding site should be considered, in addition to the electrophilicity, when designing a covalent drug. Analogues similar in structure appear to use distinct reaction mechanisms and may have very different cytotoxicities, e.g., compound 6.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np5007179DOI Listing

Publication Analysis

Top Keywords

nf-κb p50
12
binding site
8
reaction mechanisms
8
andrographolide
7
specificity inhibitory
4
inhibitory mechanism
4
mechanism andrographolide
4
andrographolide analogues
4
analogues antiasthma
4
antiasthma agents
4

Similar Publications

Aim: We applied the Institute of Medicine (IOM) definition of racial and ethnic disparities in healthcare to estimate disparities in alcohol-related problems. This estimation involved adjusting for drinking patterns, gender and age, with observed disparities further explained by socioeconomic status (SES). We compared results of five statistical approaches which use different methods for adjusting covariates.

View Article and Find Full Text PDF

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system (CNS) injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection.

View Article and Find Full Text PDF

Transcription factor networks in cellular quiescence.

Nat Cell Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.

Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!