The occurrence, fate and environmental impact of 30 pharmaceuticals including sulfonamides, fluoroquinolones, tetracyclines, macrolides, dihydrofolate reductase inhibitors, β-blockers, antiepileptics, lipid regulators, and stimulants were studied in two municipal wastewater treatment plants (WWTPs) located in Wuxi City, East China. A total of 23 pharmaceuticals were detected in wastewater samples, with a maximum concentration of 16.1 μg L(-1) (caffeine) in the influent and 615.5 ng L(-1) (azithromycin) in the effluent; 19 pharmaceuticals were detected in sludge samples at concentrations up to 12.13 mg kg(-1), with ofloxacin, azithromycin and norfloxacin being the predominant species. Mass balance analysis showed that biodegradation primarily accounted for the removal of sulfonamides, most of the macrolides, and other miscellaneous pharmaceuticals, while adsorption onto the sludge was the primary removal pathway for fluoroquinolones, tetracylines, and azithromycin during biological treatment. The total mass loads of target pharmaceuticals per capita in the two WWTPs were in the ranges of 2681.8-4333.3, 248.0-416.6 and 214.6-374.5 μg per day per inhabitant in the influent, effluent and dewatered sludge, respectively. The upgraded Plant A adopting the combined anaerobic/anoxic/oxic and moving bed biofilm process exhibited a much higher removal of target pharmaceuticals than the conventional Plant B adopting the C-Orbal oxidation ditch process. The concentration levels of sulfamethoxazole, ofloxacin, ciprofloxacin and clarithromycin in the effluent, ofloxacin in the sludge, and the mixture of all target pharmaceuticals in both effluent and sludge posed a high risk to algae in aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4em00596aDOI Listing

Publication Analysis

Top Keywords

target pharmaceuticals
12
environmental impact
8
pharmaceuticals
8
pharmaceuticals conventional
8
municipal wastewater
8
wastewater treatment
8
treatment plants
8
east china
8
pharmaceuticals detected
8
plant adopting
8

Similar Publications

Consumer concerns regarding food nutrition and quality are becoming increasingly prevalent. High-resolution mass spectrometry (HRMS)-based metabolomics stands as a cutting-edge and widely embraced technique in the realm of food component analysis and detection. It boasts the capability to identify character metabolites at exceedingly low abundances, which remain undetectable by conventional platforms.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!