A novel sub-2 μm chiral stationary phase (CSP) was prepared immobilizing vancomycin onto 1.8 μm diol hydride-based silica particles. The CSP was packed into fused silica capillaries of 75 μm i.d. with a length of 11 cm and evaluated by means of nano-liquid chromatography (nano-LC) using model compounds of both pharmaceutical and environmental interest (some non-steroidal anti-inflammatory drugs, β-blockers and herbicides). The study of the effect of the linear velocity of the mobile phase on chromatographic efficiency showed good enantioresolutions up to a value of 5.11 at the optimal linear velocity with efficiencies in terms of number of plates per meter in the range 51,650-68,330. The results were compared with the ones obtained employing 5 μm vancomycin modified diol-silica particles packed in capillaries of the same i.d. For the acidic analytes the sub-2 μm CSP showed better performances, the baseline chiral separation of several studied compounds occurred in an analysis time of less than 3 min. Column-to-column packing reproducibility (n=3) expressed as relative standard deviation was in the range 2.2-5.8% and 0.5-7.7% for retention times and peak areas, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2015.01.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!