https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25613839&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 256138392015070220181113
2045-232252015Jan23Scientific reportsSci RepDynamic phases, pinning, and pattern formation for driven dislocation assemblies.80008000800010.1038/srep08000We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.ZhouCaizhiC1] Dept. of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA [2] Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.ReichhardtCharlesCTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.Olson ReichhardtCynthia JCJTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.BeyerleinIrene JIJTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.engJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.20150123
EnglandSci Rep1015632882045-2322
20148120141292015124602015124602015124612015123epublish25613839PMC430387810.1038/srep08000srep08000Bhattacharya S. & Higgins M. J. Dynamics of a disordered flux line lattice. Phys. Rev. Lett 70, 2617–2620 (1993).10053608Koshelev A. E. & Vinokur V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett 73, 3580–3583 (1994).10057419Olson C. J., Reichhardt C. & Nori F. Nonequilibrium dynamic phase diagram for vortex lattices. Phys. Rev. B 81, 3757–3760 (1998).Pardo F., de la Cruz F., Gammel P., Bucher E. & Bishop D. J. Observation of smectic and moving-Bragg-glass phase in flowing vortex lattices. Nature (London) 396, 348–350 (1998).Hellerqvist M. C., Ephron D., White W. R., Beasley M. R. & Kapitulnik A. Vortex dynamics in two-dimensional amorphous Mo77Ge23 films. Phys. Rev. Lett 76, 4022–4025 (1996).10061172Troyanovski A. M., Aarts J. & Kes P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature (London) 399, 665–668 (1999).Danneau R. et al. Motional ordering of a charge-density wave in the sliding state. Phys. Rev. Lett 89, 106404 (2002).12225211Reichhardt C., Olson C. J., Grønbech-Jensen N. & Nori F. Moving Wigner glasses and smectics: dynamics of disordered Wigner crystals. Phys. Rev. Lett 86, 4354 (2001).11328173Yaron U. et al. Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice. Nature (London) 376, 753–755 (1995).Faleski M. C., Marchetti M. C. & Middleton A. A. Vortex dynamics and defects in simulated flux flow. Phys. Rev. B 54, 12427–12436 (1996).9985106Balents L., Marchetti M. C. & Radzihovsky L. Nonequilibrium steady states of driven periodic media. Phys. Rev. B 57, 7705–7739 (1998).Le Doussal P. & Giamarchi T. Moving glass theory of driven lattices with disorder. Phys. Rev. B 57, 11356–11403 (1998).Moon K., Scalettar R. T. & Zimányi G. T. Dynamical phases of driven vortex systems. Phys. Rev. Lett 77, 2778–2781 (1996).10062043Moretti P., Miguel M.-C., Zaiser M. & Zapperi S. Depinning transition of dislocation assemblies: Pileups and low-angle grain boundaries. Phys. Rev. B 69, 214103 (2004).Laurson L., Miguel M.-C. & Alava M. J. Dynamical correlations near dislocation jamming. Phys. Rev. Lett 105, 015501 (2010).20867459Tsekenis G., Uhl J. T., Goldenfeld N. & Dahmen K. A. Determination of the universality class of crystal plasticity. EPL 101, 36003 (2013).Bakó B., Weygand D., Samaras M., Hoffelner W. & Zaiser M. Dislocation depinning transition in a dispersion-strengthened steel. Phys. Rev. B 78, 144104 (2008).Miguel M.-C., Vespignani A., Zapperi S., Weiss J. & Grasso J. R. Intermittent dislocation flow in viscoplastic deformation. Nature (London) 410, 667–671 (2001).11287948Miguel M.-C., Vespignani A., Zaiser M. & Zapperi S. Dislocation jamming and Andrade creep. Phys. Rev. Lett 89, 165501 (2002).12398733Csikor F. F., Motz C., Weygand D., Zaiser M. & Zapperi S. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318, 251–254 (2007).17932293Wang Z. Q., Beyerlein I. J. & LeSar R. Slip band formation and mobile dislocation density generation in high rate deformation of single fcc crystals. Phil. Mag 88, 1321–1343 (2008).Tsekenis G., Goldenfeld N. & Dahmen K. A. Dislocations jam at any density. Phys. Rev. Lett 106, 105501 (2011).21469802Groma I., Györgyi G. & Ispanovity P. D. Comment on “Dislocations jam at any density.”. Phys. Rev. Lett 108, 269601 (2012).23005027Tsekenis G., Goldenfeld N. & Dahmen K. A. Tsekenis, Goldenfeld, and Dahmen reply. Phys. Rev. Lett 108, 269602 (2012).Zaiser M. Scale invariance in plastic flow of crystalline solids. Adv. Phys 55, 185 (2006).Dimiduk D. M., Woodward C., LeSar R. & Uchic M. D. Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190 (2006).16728635Laurson L. & Alava M. J. 1/f noise and avalanches scaling in plastic deformation. Phys. Rev. E 74, 066106 (2006).17280120Reichhardt C. & Olson Reichhardt C. J. Random organization and plastic depinning. Phys. Rev. Lett 103, 168301 (2009).19905729Field S., Witt J., Nori F. & Ling X. S. Superconducting vortex avalanches. Phys. Rev. Lett 74, 1206–1209 (1995).10058961Marley A. C., Higgins M. J. &, Bhattacharya S. Flux flow noise and dynamical transitions in a flux line lattice. Phys. Rev. Lett 74, 3029–3032 (1995).10058085Olson C. J., Reichhardt C. & Nori F. Superconducting vortex avalanches, voltage bursts, and vortex plastic flow: Effect of the microscopic pinning landscape on the macroscopic properties. Phys. Rev. B 56, 6175–6194 (1997).Ispánovity P. D., Groma I., Györgyi G., Szabó P. & Hoffelner W. Criticality of relaxation in dislocation systems. Phys. Rev. Lett 107, 085506 (2011).21929177Hirth J. P. & Lothe J. Theory of Dislocations. (Wiley, New York, 1982).Mughrabi H. A 2-parameter description of heterogeneous dislocation distributions in deformed metal crystals. Mater. Sci. Eng 85, 15–31 (1987).Kuhlman-Wilsdorf D. Dislocation cells, redundant dislocations and the LEDS hypothesis. Scripta Mater 34, 641–650 (1996).Kocks U. F., Hasegawa T. & Scattergood R. O. On the origin of cell-walls and of lattice misorientations during deformation. Scripta Metal 14, 449–454 (1980).Stout M. G. & Rollett A. D. Large-strain Bauschinger effects in FCC metals and alloys. Metal. Trans A 21, 3201–3213 (1990).Xue Q., Beyerlein I. J. & Alexander D. J. Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Mater 55, 655–668 (2007).Huang X., Borrego A. & Pantelon W. Polycrystal deformation and single crystal deformation: dislocation structure and flow stress in copper. Mater. Sci. Eng. A 319–321, 237–241 (2001).Hughes D. A. & Hansen N. Microstructure and strength of nickel at large strains. Acta Mater 48, 2985–3004 (2000).Dalla Torre F. et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater 52, 4819–4832 (2004).Dalla Torre F. H., Pereloma E. V. & Davies C. H. J. Strain hardening behavior and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes. Acta Mater 54, 1135–1146 (2006).Li J. C. M. Electron Microscopy and Strength of Crystals. (Interscience, New York, 1963).Pertsinidis A. & Ling X. S. Statics and dynamics of 2D colloidal crystals in a random pinning potential. Phys. Rev. Lett 100, 028303 (2008).18232935Taylor G. I. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. Roy. Soc 145, 362 (1934).Li J. C. M. The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metall 8, 296 (1960).Kocks U. F. & Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci 114, 171–273 (2003).Kok S., Beaudoin A. J. & Tortorelli D. A. On the development of stage IV hardening using a model based on the mechanical threshold. Acta Mater 50, 1653 (2002).Okuma S., Tsugawa Y. & Motohashi A. Transitions from reversible to irreversible flow: Absorbing and depinning transitions in a sheared-vortex system. Phys. Rev. B 83, 024507 (2011).Haziot A., Rojas X., Fefferman A. D., Beamish J. R. & Balibar S. Giant plasticity of a quantum crystal. Phys. Rev. Lett 110, 035301 (2013).23373930Haziot A., Fefferman A. D., Beamish J. R. & Balibar S. Dislocation densities and lengths in solid He-4 from elasticity measurements. Phys. Rev. B 87, 060509 (2013).