We report here a hepatoma-targeting multi-responsive biodegradable crosslinked nanogel, poly(6-O-vinyladipoyl-D-galactose-ss-N-vinylcaprolactam-ss-methacrylic acid) P(ODGal-VCL-MAA), using a combination of enzymatic transesterification and emulsion copolymerization for intracellular drug delivery. The nanogel exhibited redox, pH and temperature-responsive properties, which can be adjusted by varying the monomer feeding ratio. Furthermore, the volume phase transition temperature (VPTT) of the nanogels was close to body temperature and can result in rapid thermal gelation at 37 °C. Scanning electron microscopy also revealed that the P(ODGal-VCL-MAA) nanogel showed uniform spherical monodispersion. With pyrene as a probe, the fluorescence excitation spectra demonstrated nanogel degradation in response to glutathione (GSH). X-ray diffraction (XRD) showed an amorphous property of DOX within the nanogel, which was used in this study as a model anti-cancer drug. Drug-releasing characteristics of the nanogel were examined in vitro. The results showed multi-responsiveness of DOX release by the variation of environmental pH values, temperature or the availability of GSH, a biological reductase. An in vitro cytotoxicity assay showed a higher anti-tumor activity of the galactose-functionalized DOX-loaded nanogels against human hepatoma HepG2 cells, which was, at least in part, due to specific binding between the galactose segments and the asialoglycoprotein receptors (ASGP-Rs) in hepatic cells. Confocal laser scanning microscopy (CLSM) and flow cytometric profiles further confirmed elevated cellular uptake of DOX by the galactose-functionalised nanogels. Thus, we report here a multi-responsive P(ODGal-VCL-MAA) nanogel with a hepatoma-specific targeting ability for anti-cancer drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr06714b | DOI Listing |
Med Oncol
January 2025
Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
This study presents nanostructured lipid carrier (NLC) co-loaded with Docetaxel (DCT) and 5-Fluorouracil (5-FU) as a targeted therapeutic approach for gastric cancer (GC). Using nanoprecipitation, NLC-DCT/5-FU were synthesized and exhibited an average particle size of 215.3 ± 10.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.
Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
Lipidated analogues of glucagon-like peptide 1 (GLP-1) have gained enormous attention as long-acting peptide therapeutics for type 2 diabetes and also antiobesity treatment. Commercially available therapeutic lipidated GLP-1 analogues, semaglutide and liraglutide, have the great advantage of prolonged half-lives of hours and days instead of minutes as is the case for native GLP-1. A crucial factor in the development of novel lipidated therapeutic peptides is their physical stability, which greatly influences manufacturing and drug product development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt 64287, Germany.
In recent years, rationally designed macrocycles have emerged as promising therapeutic modalities for challenging drug targets. Macrocycles can improve affinity, selectivity, and pharmacokinetic (PK) parameters, possibly via providing semirigid, preorganized scaffolds. Nevertheless, how macrocyclization affects PK-relevant properties is still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!