Gastric electrical stimulation for obesity.

Curr Gastroenterol Rep

Department of Medicine, Division of Gastroenterology, Keck School of Medicine at USC, 1520 San Pablo Street, Los Angeles, CA, 50033, USA.

Published: January 2015

Obesity is a growing health problem worldwide with a major impact on health and healthcare expenditures. Medical therapy in the form of diet and pharmacotherapy has limited effect on weight. Standard bariatric surgery is effective but is associated with morbidity and mortality, creating an unmet need for alternative therapies. One such therapy, the application of electrical stimulation to the stomach, has been studied extensively for the last two decades. Though pulse parameters differ between the various techniques used, the rationale behind this assumes that application of electrical current can interfere with gastric motor function or modulate afferent signaling to the brain or both. Initial studies led by industry failed to show an effect on body weight. However, more recently, there has been a renewed interest in this therapeutic modality with a number of concepts being evaluated in large human trials. If successful, this minimally invasive and low-risk intervention would be an important addition to the existing menu of therapies for obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11894-014-0424-yDOI Listing

Publication Analysis

Top Keywords

electrical stimulation
8
application electrical
8
gastric electrical
4
stimulation obesity
4
obesity obesity
4
obesity growing
4
growing health
4
health problem
4
problem worldwide
4
worldwide major
4

Similar Publications

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Introduction: Electrical stimulation (E-stim) can reduce the impact of complications, like spasticity, bladder dysfunction in people with spinal cord injuries (SCIs), enhancing quality of life and health outcomes. With SCI prevalence high in regional Australia and a shift towards home-based community integrated care, the perspectives of people with SCI and healthcare professionals on current and future use of E-stim home-devices are needed.

Methods: A mixed-methods concurrent triangulation approach was used.

View Article and Find Full Text PDF

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!