Focal adhesion kinase (FAK) is one of the nonreceptor protein tyrosine kinases critical for the dynamic regulation of cell adhesion structures. Recent studies have demonstrated that FAK is also localized at excitatory glutamatergic synapses and is involved in long-term modification of synaptic strength. However, whether FAK is engaged in nociceptive processing in the spinal dorsal horn remains unresolved. The current study shows that intraplantar injection of complete Freund's adjuvant (CFA) in mice significantly increases FAK autophosphorylation at Tyr397, indicating a close correlation of FAK activation with inflammatory pain. FAK activation depended on the activity of N-methyl-D-aspartate-subtype glutamate receptor (NMDAR) and metabotropic glutamate receptor (mGluR) because pharmacological inhibition of NMDAR or group I mGluR totally abolished FAK phosphorylation induced by CFA. The active FAK operated to stimulate extracellular signal-regulated kinase1/2 (ERK1/2), which boosted the protein expression of GluN2B subunit-containing NMDAR at the synaptosomal membrane fraction. Inhibition of FAK activity by spinal expression of a kinase-dead FAK(Y397F) mutant repressed ERK1/2 hyperactivity and reduced the synaptic concentration of NMDAR in CFA-injected mice. Electrophysiological recording demonstrated that intracellular loading of specific anti-FAK antibody significantly reduced the amplitudes of NMDAR-mediated excitatory postsynaptic currents on lamina II neurons from inflamed mice but not from naive mice. Behavioral tests showed that spinal expression of FAK(Y397F) generated a long-lasting alleviation of CFA-induced mechanical allodynia and thermal hyperalgesia. These data indicate that FAK might exaggerate NMDAR-mediated synaptic transmission in the spinal dorsal horn to sensitize nociceptive behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.23551 | DOI Listing |
J Neuroeng Rehabil
January 2025
Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.
View Article and Find Full Text PDFCureus
December 2024
Neurological Surgery, High Specialty Regional Hospital Bajio, León, MEX.
Intradural extramedullary bronchogenic cysts (IEBCs) are exceedingly rare congenital entities, composed of respiratory epithelial cells derived from the anomalous development of the embryonic foregut. Due to their exceptionally low morbidity, only limited cases are available. Consequently, the clinical features and optimal therapeutic approach remain poorly understood.
View Article and Find Full Text PDFCureus
December 2024
Orthopaedic Surgery, Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, JPN.
A 41-year-old man with a history of obesity, hypertension, and smoking suffered from numbness and weakness in both lower limbs. He was diagnosed with ossification of the posterior longitudinal ligament and ligamentum flavum in the cervical and thoracic spine by X-rays, CT, and MRI. The patient underwent laminectomies at T2 and T3 levels, along with posterior fusion from T1 to T4, to address an upper thoracic spine lesion causing sensory deficits up to T5 and gait disturbances.
View Article and Find Full Text PDFJ Anesth
January 2025
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
eNeuro
January 2025
Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!