Differential cross sections (DCSs) for inelastic collisions of OH(X) with Xe have been measured at a collision energy of 483 cm(-1). The hydroxyl (OH) radicals were initially prepared in the X(2)Π3/2 (v = 0, j = 1.5, f) level using the hexapole electric field selection method. Products were detected state-selectively by [2 + 1] resonance-enhanced multiphoton ionization of OH, combined with velocity-map imaging. Integral cross sections in OH(X) + Xe at a collision energy of 490 cm(-1) were also measured by laser-induced fluorescence. The results are compared with exact close-coupling quantum mechanical scattering calculations on the only available ab initio potential energy surface (PES). The agreement between experimental and theoretical results is generally very satisfactory. This highlights the ability of such measurements to test the available PES for such a benchmark open-shell system. The agreement between experiment and theory for DCSs is less satisfactory at low scattering angles, and possible reasons for this disagreement are discussed. Finally, theoretical calculations of OH(X) + He DCSs have been obtained at various collision energies and are compared with those of OH(X) + Xe. The role of the reduced mass in the DCSs and partial cross sections is also examined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4906070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!