Differential and integral cross sections in OH(X) + Xe collisions.

J Chem Phys

School of Biological and Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, United Kingdom.

Published: January 2015

Differential cross sections (DCSs) for inelastic collisions of OH(X) with Xe have been measured at a collision energy of 483 cm(-1). The hydroxyl (OH) radicals were initially prepared in the X(2)Π3/2 (v = 0, j = 1.5, f) level using the hexapole electric field selection method. Products were detected state-selectively by [2 + 1] resonance-enhanced multiphoton ionization of OH, combined with velocity-map imaging. Integral cross sections in OH(X) + Xe at a collision energy of 490 cm(-1) were also measured by laser-induced fluorescence. The results are compared with exact close-coupling quantum mechanical scattering calculations on the only available ab initio potential energy surface (PES). The agreement between experimental and theoretical results is generally very satisfactory. This highlights the ability of such measurements to test the available PES for such a benchmark open-shell system. The agreement between experiment and theory for DCSs is less satisfactory at low scattering angles, and possible reasons for this disagreement are discussed. Finally, theoretical calculations of OH(X) + He DCSs have been obtained at various collision energies and are compared with those of OH(X) + Xe. The role of the reduced mass in the DCSs and partial cross sections is also examined.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4906070DOI Listing

Publication Analysis

Top Keywords

cross sections
16
integral cross
8
sections ohx
8
collision energy
8
ohx
5
differential integral
4
cross
4
sections
4
ohx collisions
4
collisions differential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!