Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is significant clinical need for viable small-diameter vascular grafts. While there are many graft biomaterials in development, few have been clinically successful. Evaluation of grafts with a clinically relevant model is needed to drive development. This work examined extracellular matrix coatings on the thrombotic phenotype of endothelial outgrowth cells (EOCs). EOCs were tested on flat plates and tubular grafts. Flat plate studies examined collagen I, collagen IV, fibronectin and α-elastin coatings. EOCs attached or proliferated more readily on collagen I and fibronectin surfaces as determined by total DNA. The production of activated protein C (APC) by EOCs was also dependent on the surface coating, with collagen I and fibronectin displaying a higher activity than both collagen IV and α-elastin on flat plate studies. Based on these results, only collagen I and fibronectin coatings were tested on expanded polytetrafluoroethylene (ePTFE) in the ex vivo model. Tubular samples showed significantly greater tissue factor pathway inhibitor gene expression on collagen I than on fibronectin. Platelet adhesion was not significantly different, but EOCs on collagen I produced significantly lower APC than on fibronectin, suggesting that differences exist between the flat plate and tubular cultures. Overall, while the hemostatic phenotype of EOCs displayed some differences, cell responses were largely independent of the matrix coating. EOCs adhered strongly to both fibronectin- and collagen-I-coated ePTFE grafts under ex vivo (100 ml/min) flow conditions suggesting the usefulness of this clinically relevant cell source, testing modality, and shunt model for future work examining biomaterials and cell conditioning before implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329100 | PMC |
http://dx.doi.org/10.1159/000368223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!