Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aging individuals and diabetic patients often exhibit concomitant reductions of skeletal muscle mass/strength and insulin sensitivity, suggesting an intimate link between muscle aging and insulin resistance. Foxo1, a member of the FOXO transcription factor family, is an important player in insulin signaling due to its inhibitory role in glucose uptake and utilization in skeletal muscle. Phosphorylation of Foxo1 is thought to mitigate the transactivation of pyruvate dehydrogenase lipoamide kinase 4 (PDK4), which is a negative regulator of the glycolytic enzyme pyruvate dehydrogenase (PDH). In contrast, how aging would regulate acetylation/deacetylation machineries and glucose utilization in skeletal muscle through the Foxo1/PDH axis remains largely undetermined. Accumulating body of evidence have shown that resveratrol, a natural polyphenol in grapes and red wine, activates the longevity-related protein sirtuin 1 (SIRT1) and augments insulin sensitivity in addition to its well-documented effects on mitochondrial energetics. The present review summarizes the role of Foxo1/SIRT1 in insulin signaling in skeletal muscle and proposes the insight that activation of SIRT1 deacetylase activity to deacetylate and suppress the Foxo1-induced transactivation of PDK4 may represent an anti-hyperglycemic mechanism of resveratrol in aging skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000369718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!