Inhibition of RANKL-dependent cellular fusion in pre-osteoclasts by amiloride and a NHE10-specific monoclonal antibody.

Cell Biol Int

Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.

Published: June 2015

The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10447DOI Listing

Publication Analysis

Top Keywords

trap-positive ocs
12
cellular fusion
8
monoclonal antibody
8
osteoclastic differentiation
8
decreased number
8
number large
8
large trap-positive
8
increased number
8
number small
8
small trap-positive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!