Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es503920nDOI Listing

Publication Analysis

Top Keywords

hocl hobr
12
peracetic acid
8
saline waters
8
chloride bromide
8
hobr
5
acid oxidation
4
oxidation saline
4
waters absence
4
absence presence
4
presence ₂o
4

Similar Publications

The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br and Cl) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and HBO permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond).

View Article and Find Full Text PDF

Unveiling the reaction chemistry of sulfoxides during water chlorination.

Water Res

February 2025

Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. Electronic address:

Article Synopsis
  • - The study measured the second-order rate constants (k) for how eight model sulfoxides react with hypochlorous acid (HOCl), finding values between 2.7 and 5.8 × 10 M s, indicating varying reactivity among the sulfoxides.
  • - A strong linear correlation (R = 0.89) was established using quantitative structure-activity relationships (QSAR) with Taft σ* constants, suggesting that the reactions are primarily driven by HOCl, with minimal impact from other chlorine species in typical water treatment settings.
  • - Various analytical techniques revealed that major transformation products from these reactions include sulfones and Cl-substituted sulfoxides, and it was found that sul
View Article and Find Full Text PDF

The chlorination of extracellular polymeric substances (EPS) secreted by biofilm often induces the formation of high-toxic disinfection byproducts (DBPs) in drinking water distribution systems. The protein components in EPS are the main precursors of DBPs, which mostly exist in the form of combined amino acids. The paper aimed to study the action of a pipe corrosion product (Cu) on the formation of DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as a precursor.

View Article and Find Full Text PDF

Sulfilimine bond formation in collagen IV.

Chem Commun (Camb)

January 2024

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.

The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV.

View Article and Find Full Text PDF

Myeloperoxidase and eosinophil peroxidase exert their antimicrobial functions through the oxidative actions of their hypohalous acid products. Plasmalogen phospholipids are particularly susceptible to oxidation of their vinyl ether functional group by hypohalous acids. This produces a family of halogenated lipid products with pro-inflammatory roles and potential biomarker utility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!