Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare autoimmune neurological condition. Antibodies targeting glycine receptors (GlyR) have been implicated in PERM. Because GlyR activity is enhanced by inhaled anesthetic drugs at clinically relevant concentrations, there is a theoretical possibility that these drugs may be less effective in the presence of GlyR antibodies. We describe a case of general anesthesia in a patient with PERM and GlyR antibodies. This patient did not demonstrate a clinically significant alteration in the behavioral effects of anesthesia using induction of anesthesia with sevoflurane and maintenance of anesthesia using sevoflurane and nitrous oxide.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ACC.0b013e3182a6d853DOI Listing

Publication Analysis

Top Keywords

progressive encephalomyelitis
8
encephalomyelitis rigidity
8
rigidity myoclonus
8
perm glyr
8
glyr antibodies
8
anesthesia sevoflurane
8
anesthesia
5
myoclonus anesthesia
4
anesthesia glycine
4
glycine receptor
4

Similar Publications

The middle cerebellar peduncle (MCP) is the largest afferent system of the cerebellum and consists of fibres from the cortico-ponto-cerebellar tract. Specifically, several relevant diseases can present with hyperintensity in the MCP on T2-weighted/fluid-attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging sequences, including multiple sclerosis; acute disseminated encephalomyelitis; neuromyelitis optica spectrum disorder; progressive multifocal leucoencephalopathy; hepatic encephalopathy; osmotic demyelination syndrome; multiple system atrophy; fragile X-associated tremor/ataxia syndrome; megalencephalic leucoencephalopathy with subcortical cysts; spinocerebellar ataxias; hemi-pontine infarct with trans-axonal degeneration; and diffuse midline glioma with the histone H3K27M mutation. The aim of this pictorial review is to discuss the imaging findings that are relevant for the differential diagnosis of diseases presenting with MCP hyperintensity on T2/FLAIR sequences.

View Article and Find Full Text PDF

Introduction: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is characterized by brainstem symptoms, muscle rigidity, and myoclonus. While autoantibodies to inhibitory neurons have been associated with the pathology, about 30% of cases are negative for autoantibodies. There are few reported cases of antibody-negative PERM and its clinical course and prognosis are unknown.

View Article and Find Full Text PDF

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD) are two rare autoimmune inflammatory demyelinating diseases involving the central nervous system, which are often seen with combined involvement of the optic nerve and spinal cord. MOGAD can be confused with multiple sclerosis or NMOSD, due to its clinical presentation that may be similar and its characteristic to progress with habitual attacks. Although the clinical course of the above-mentioned three diseases is similar, their diagnosis and management are different.

View Article and Find Full Text PDF

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!