Importance: Inherited retinal dystrophies (IRDs) are a group of retinal degenerative diseases presenting genetic and clinical heterogeneities, which have challenged the genetic and clinical diagnoses of IRDs. Genetic evaluations of patients with IRD might result in better clinical assessments and better management of patients.
Objective: To determine the genetic lesions with phenotypic correlations in patients with diverse autosomal recessive IRD using next-generation sequencing.
Design, Setting, And Participants: A cohort of 20 Chinese families affected with autosomal recessive IRD were recruited (with data on their detailed family history and on their clinical condition). To identify disease-causing mutations in the patients, the targeted sequence capture of IRD-relevant genes using 2 in-house-designed microarrays, followed by next-generation sequencing, was performed. Bioinformatics annotation, intrafamilial cosegregation analyses, in silico analyses, and functional analyses were subsequently conducted for the variants identified by next-generation sequencing.
Main Outcomes And Measures: The results of detailed clinical evaluations, the identification of disease-causing mutations, and the clinical diagnosis.
Results: Homozygous and biallelic variants were identified in 11 of the 20 families (55%) as very likely disease-causing mutations, including a total of 17 alleles, of which 12 are novel. The 17 alleles identified here include 3 missense, 6 nonsense, 4 frameshift, and 4 splice site mutations. In addition, we found biallelic RP1 mutations in a patient with cone-rod dystrophy, which was not previously correlated with RP1 mutations. Moreover, the identification of pathogenic mutations in 3 families helped to refine their clinical diagnoses.
Conclusions And Relevance: In this study, to our knowledge, many mutations identified in those known loci for autosomal recessive IRD are novel. Specific RP1 mutations may correlate with cone-rod dystrophy. Genetic evaluations with targeted next-generation sequencing might result in a better clinical diagnosis and a better clinical assessment and, therefore, should be recommended for such patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/jamaophthalmol.2014.5831 | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Bochkov Research Centre for Medical Genetics, Moscow, Russia.
A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.
View Article and Find Full Text PDFEur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Vet Sci
November 2024
Department of Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts.
View Article and Find Full Text PDFIndian J Ophthalmol
December 2024
Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India.
Purpose: To assess the clinical phenotypes and genetic mutations in patients with Leber congenital amaurosis (LCA) from a tertiary eye care center in India.
Design: Retrospective observational study.
Methods: The study includes patients with a clinical diagnosis of LCA who underwent genetic testing from January 2016 to December 2021.
Metabolites
December 2024
IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.
Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!