Molecular genetic testing in clinical diagnostic assessments that demonstrate correlations in patients with autosomal recessive inherited retinal dystrophy.

JAMA Ophthalmol

Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing, China9State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou.

Published: April 2015

AI Article Synopsis

  • Inherited retinal dystrophies (IRDs) are complex genetic diseases that vary widely in their genetic causes and clinical presentations, making diagnosis challenging.
  • The study focused on identifying genetic mutations in a group of 20 Chinese families with autosomal recessive IRD using advanced sequencing techniques.
  • The researchers successfully identified likely disease-causing mutations in 11 families, including many new mutations, which helped improve clinical diagnoses for several patients.

Article Abstract

Importance: Inherited retinal dystrophies (IRDs) are a group of retinal degenerative diseases presenting genetic and clinical heterogeneities, which have challenged the genetic and clinical diagnoses of IRDs. Genetic evaluations of patients with IRD might result in better clinical assessments and better management of patients.

Objective: To determine the genetic lesions with phenotypic correlations in patients with diverse autosomal recessive IRD using next-generation sequencing.

Design, Setting, And Participants: A cohort of 20 Chinese families affected with autosomal recessive IRD were recruited (with data on their detailed family history and on their clinical condition). To identify disease-causing mutations in the patients, the targeted sequence capture of IRD-relevant genes using 2 in-house-designed microarrays, followed by next-generation sequencing, was performed. Bioinformatics annotation, intrafamilial cosegregation analyses, in silico analyses, and functional analyses were subsequently conducted for the variants identified by next-generation sequencing.

Main Outcomes And Measures: The results of detailed clinical evaluations, the identification of disease-causing mutations, and the clinical diagnosis.

Results: Homozygous and biallelic variants were identified in 11 of the 20 families (55%) as very likely disease-causing mutations, including a total of 17 alleles, of which 12 are novel. The 17 alleles identified here include 3 missense, 6 nonsense, 4 frameshift, and 4 splice site mutations. In addition, we found biallelic RP1 mutations in a patient with cone-rod dystrophy, which was not previously correlated with RP1 mutations. Moreover, the identification of pathogenic mutations in 3 families helped to refine their clinical diagnoses.

Conclusions And Relevance: In this study, to our knowledge, many mutations identified in those known loci for autosomal recessive IRD are novel. Specific RP1 mutations may correlate with cone-rod dystrophy. Genetic evaluations with targeted next-generation sequencing might result in a better clinical diagnosis and a better clinical assessment and, therefore, should be recommended for such patients.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaophthalmol.2014.5831DOI Listing

Publication Analysis

Top Keywords

autosomal recessive
16
better clinical
12
recessive ird
12
disease-causing mutations
12
rp1 mutations
12
clinical
10
mutations
9
correlations patients
8
inherited retinal
8
genetic clinical
8

Similar Publications

A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.

View Article and Find Full Text PDF

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

European Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels.

Vet Sci

November 2024

Department of Small Animal Internal Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.

Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts.

View Article and Find Full Text PDF

Leber congenital amaurosis: A clinical and genetic study from a tertiary eye care center.

Indian J Ophthalmol

December 2024

Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India.

Purpose: To assess the clinical phenotypes and genetic mutations in patients with Leber congenital amaurosis (LCA) from a tertiary eye care center in India.

Design: Retrospective observational study.

Methods: The study includes patients with a clinical diagnosis of LCA who underwent genetic testing from January 2016 to December 2021.

View Article and Find Full Text PDF

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!