We present a statistical shape model approach for automated segmentation of the proximal humerus and scapula with subsequent bone-cartilage interface (BCI) extraction from 3D magnetic resonance (MR) images of the shoulder region. Manual and automated bone segmentations from shoulder MR examinations from 25 healthy subjects acquired using steady-state free precession sequences were compared with the Dice similarity coefficient (DSC). The mean DSC scores between the manual and automated segmentations of the humerus and scapula bone volumes surrounding the BCI region were 0.926  ±  0.050 and 0.837  ±  0.059, respectively. The mean DSC values obtained for BCI extraction were 0.806  ±  0.133 for the humerus and 0.795  ±  0.117 for the scapula. The current model-based approach successfully provided automated bone segmentation and BCI extraction from MR images of the shoulder. In future work, this framework appears to provide a promising avenue for automated segmentation and quantitative analysis of cartilage in the glenohumeral joint.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/60/4/1441DOI Listing

Publication Analysis

Top Keywords

bci extraction
12
bone segmentation
8
bone-cartilage interface
8
magnetic resonance
8
resonance images
8
automated segmentation
8
humerus scapula
8
images shoulder
8
manual automated
8
automated bone
8

Similar Publications

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

Attention is one of many human cognitive functions that are essential in everyday life. Given our limited processing capacity, attention helps us focus only on what matters. Focusing attention on one speaker in an environment with many speakers is a critical ability of the human auditory system.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features from low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with a lightweight temporal attention mechanism for EEG-Based MI decoding.

View Article and Find Full Text PDF

Introduction: Motor Imagery (MI) Electroencephalography (EEG) signals are non-stationary and dynamic physiological signals which have low signal-to-noise ratio. Hence, it is difficult to achieve high classification accuracy. Although various machine learning methods have already proven useful to that effect, the use of many features and ineffective EEG channels often leads to a complex structure of classifier algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!