Ferromagnetic FeCo nanocrystals with high coercivity have been synthesized using a reductive decomposition method. The sizes and shapes of the nanocrystals were found to be dependent on reaction parameters such as the surfactant ratio, the precursor concentration and the heating rate. Synthesized nanocrystals have a body-centered cubic crystal structure for both particles and nanowires and the (110) crystalline direction is along the long axis of the nanowires. The coercivity and magnetization of the FeCo nanocrystals are found to be dependent on morphology. Nanowires of Fe60Co40 with saturation magnetization of 92 emu g(-1) and coercive force of 1.2 kOe have been obtained in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/26/7/075601DOI Listing

Publication Analysis

Top Keywords

high coercivity
8
feco nanocrystals
8
nanocrystals dependent
8
synthesis characterization
4
characterization feco
4
nanowires
4
feco nanowires
4
nanowires high
4
coercivity ferromagnetic
4
ferromagnetic feco
4

Similar Publications

Research on Sensitivity Improvement Methods for RTD Fluxgates Based on Feedback-Driven Stochastic Resonance with PSO.

Sensors (Basel)

January 2025

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.

View Article and Find Full Text PDF

La-Co-doped ferrite is widely used due to its excellent magnetic properties, but the mechanisms of La-Co doping on its phase formation and magnetic properties remain unclear. This study clarifies the phase formation mechanisms and reveals that La-Co doping reduces the formation temperatures of the intermediate phase SrFeO and thus the final SrFeO phase. This promotes complete formation of SrFeO, enhancing saturation magnetization.

View Article and Find Full Text PDF

Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets.

Mater Horiz

January 2025

College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124, China.

To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [()], and adequate coercivity (). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr). Erbium-based compounds (ErCo) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in and ().

View Article and Find Full Text PDF

Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Article Synopsis
  • Interstitial quasi-atomic electrons (IQEs) significantly influence the magnetism of crystalline electrides, with their own magnetic moments affected by nearby cations.
  • Weak spin-orbit coupling and limited interactions prevent these systems from achieving hard magnetism, presenting a challenge for stronger magnetic properties.
  • However, certain 2D electrides, like [ReC]·2e, exhibit permanent magnetism by creating a ferrimagnetic state and demonstrate high coercivity due to the interaction between Re-spin and IQE-spin lattices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!