Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4416619PMC
http://dx.doi.org/10.1152/jn.00872.2014DOI Listing

Publication Analysis

Top Keywords

locomotor training
16
decreased early
12
reciprocal nonreciprocal
8
soleus motoneurons
8
spinal cord
8
cord injury
8
seated position
8
reflexes normalized
8
reciprocal inhibition
8
inhibition subjects
8

Similar Publications

Objectives: To examine the validity and reliability of the Simple Motor Competence-check for Kids (SMC-Kids), which was developed to assess motor development in preschool children.

Design: A cross-sectional and repeated-measures design.

Methods: To assess validity, 71 children aged 4-6 years completed the Test of Gross Motor Development-3 (TGMD-3) and SMC-Kids (10 m shuttle run and paper ball throw).

View Article and Find Full Text PDF

Background: Our studies suggest that iron-overloaded rats developed neurotoxicity and cognitive impairment (1,2). An increase in brain mitochondrial fission and brain mitophagy have been considered as one of underlying mechanisms in brain with iron-overloaded condition (3,4). Hence, a pharmacological intervention focused on preventing brain mitochondrial pathologies is required.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: An increase in the development of learning deficit occurred during estrogen-deprived periods via the increment of systemic and brain oxidative stress, brain apoptosis, and synaptic dysplasticity. Although estrogen supplementation has been shown to improve the brain function in estrogen-deprived conditions, it can lead to several adverse effects. Therefore, the novel therapeutic approach with minimal side effects to protect brain function in estrogen-deprived conditions should be further investigated.

View Article and Find Full Text PDF

Despite their potential, exoskeletons have not reached widespread adoption in daily life, partly due to the challenge of seamlessly adapting assistance across various tasks and environments. Task-specific designs, reliance on complex sensing and extensive data-driven training often limit the practicality of the existing control strategies. To address this challenge, we introduce an adaptive control strategy for hip exoskeletons, emphasizing minimal sensing and ease of implementation.

View Article and Find Full Text PDF

Objective: Preschool children are in a period of rapid physical development, and improving their gross motor skills and physical fitness is quite important for their health. This study aimed to investigate the effectiveness of a structured physical training program in improving Chinese preschool children's gross motor development and physical fitness.

Method: A sample of 80 children aged 4 to 5 from Fujian, China, were randomly assigned to the intervention group ( = 41), which received a 15-week structured physical training, while the control group ( = 39) continued with their daily physical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!