Mutual information reveals multiple structural relaxation mechanisms in a model glass former.

Nat Commun

1] H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK [2] School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK [3] Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, UK.

Published: January 2015

Among the key challenges to our understanding of solidification in the glass transition is that it is accompanied by little apparent change in structure. Recently, geometric motifs have been identified in glassy liquids, but a causal link between these motifs and solidification remains elusive. One 'smoking gun' for such a link would be identical scaling of structural and dynamic lengthscales on approaching the glass transition, but this is highly controversial. Here we introduce an information theoretic approach to determine correlations in displacement for particle relaxation encoded in the initial configuration of a glass-forming liquid. We uncover two populations of particles, one inclined to relax quickly, the other slowly. Each population is correlated with local density and geometric motifs. Our analysis further reveals a dynamic lengthscale similar to that associated with structural properties, which may resolve the discrepancy between structural and dynamic lengthscales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354007PMC
http://dx.doi.org/10.1038/ncomms7089DOI Listing

Publication Analysis

Top Keywords

glass transition
8
geometric motifs
8
structural dynamic
8
dynamic lengthscales
8
mutual reveals
4
reveals multiple
4
structural
4
multiple structural
4
structural relaxation
4
relaxation mechanisms
4

Similar Publications

The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.

View Article and Find Full Text PDF

Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models of polymers can enable access to these long-time dynamics, but can have limited applicability outside the systems and state points that they are validated against. Here we develop and validate a minimal coarse-grained model of the aerospace thermoplastic poly(etherketoneketone) (PEKK).

View Article and Find Full Text PDF

Polyurea (PUR) has been widely used as a protective coating in recent years. In order to complete the understanding of the relationship between PUR microstructure and its energy absorption capabilities, the mechanical and dynamic performance of PURs containing various macrodiol structural units were compared using material characterization techniques and molecular dynamic simulation. The results showed that the PUR polycarbonate diols formed as energy absorbing materials showed high tensile strength, high toughness, and excellent loss factor distribution based on the comparison of stress-strain tensile curves, glass transition temperatures, phase images, and dynamic storage loss modulus.

View Article and Find Full Text PDF

Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin greener than the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners that enable, under mild thermo-chemical conditions, the total recycling of the composite material through the recovery of the fiber and matrix as a thermoplastic. This research addressed the characterization, processability, and recyclability of a new commercial cleavable bio-resin formulation (designed by the R-Concept company) that can be used in the fabrication of fully recyclable polymer composites.

View Article and Find Full Text PDF

This article is devoted to the development of a new method for the synthesis of magnetic cobalt boride nanoparticles using a low-energy approach. The obtained nanoparticles were used to create composite materials based on industrial thermoplastic ABS. The effect of different concentrations of nanoparticles on the physical, mechanical, magnetic, and dielectric properties of composite materials was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!