Low-rank matrix approximation plays an important role in the area of computer vision and image processing. Most of the conventional low-rank matrix approximation methods are based on the l2 -norm (Frobenius norm) with principal component analysis (PCA) being the most popular among them. However, this can give a poor approximation for data contaminated by outliers (including missing data), because the l2 -norm exaggerates the negative effect of outliers. Recently, to overcome this problem, various methods based on the l1 -norm, such as robust PCA methods, have been proposed for low-rank matrix approximation. Despite the robustness of the methods, they require heavy computational effort and substantial memory for high-dimensional data, which is impractical for real-world problems. In this paper, we propose two efficient low-rank factorization methods based on the l1 -norm that find proper projection and coefficient matrices using the alternating rectified gradient method. The proposed methods are applied to a number of low-rank matrix approximation problems to demonstrate their efficiency and robustness. The experimental results show that our proposals are efficient in both execution time and reconstruction performance unlike other state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2014.2312535DOI Listing

Publication Analysis

Top Keywords

low-rank matrix
20
matrix approximation
16
methods based
12
based -norm
12
alternating rectified
8
rectified gradient
8
gradient method
8
methods
7
low-rank
6
matrix
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!