Rationale: Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH).
Objectives: We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs).
Methods: We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1.
Measurements And Main Results: Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1(+/-) mice developed pulmonary hypertension (reversed by ovariectomy).
Conclusions: We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384779 | PMC |
http://dx.doi.org/10.1164/rccm.201410-1802OC | DOI Listing |
Adv Sci (Weinh)
March 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200031, China.
Bone morphogenetic protein (BMP) signaling plays a vital role in differentiation, organogenesis, and various cell processes. As a member of TGF-β superfamily, the BMP initiation usually accompanies crosstalk with other signaling pathways and simultaneously activates some of them. It is quite challenging to solely initiate an individual pathway.
View Article and Find Full Text PDFBioact Mater
November 2023
Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.
Genes (Basel)
May 2023
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
Bone morphogenetic proteins (BMPs) play important roles in a lot of biological processes, such as bone development, cell proliferation, cell differentiation, growth, etc. However, the functions of abalone BMP genes are still unknown. This study aimed to better understand the characterization and biological function of BMP7 of (7) via cloning and sequencing analysis.
View Article and Find Full Text PDFRev Mal Respir
March 2023
Faculté de médecine, Université Paris-Saclay, Inserm UMR_S 999 - Bâtiment de recherche (2(e) étage), 63, rue Gabriel-Péri, 94276 Le Kremlin-Bicêtre, France; Inserm Unité mixte de recherche 999, Hôpital Marie-Lannelongue, 92350 Le Plessis-Robinson, France; Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris (AP-HP), 94276 Le Kremlin-Bicêtre, France. Electronic address:
The signaling pathway of the bone morphogenetic protein (BMP)-9 binding to the endothelial receptor BMP receptor type II (BMPR-II), activin receptor-like kinase-1 (ALK1) and the coreceptor endoglin is essential to maintain the pulmonary vascular integrity. Dysregulation of this pathway is implicated in numerous vascular diseases, such as pulmonary arterial hypertension (PAH), hereditary hemorrhagic telangiectasia (HHT) and hepatopulmonary syndrome (HPS). This article aims to provide a comprehensive review of the implication of the BMP-9/BMPR-II/ALK1/endoglin pathway in the pathophysiology of these diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!