New insights into structure and luminescence of Eu(III) and Sm(III) complexes of the 3,4,3-LI(1,2-HOPO) ligand.

J Am Chem Soc

Chemical Science Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States.

Published: March 2015

We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M(III)L](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu(III) as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu(III) and Sm(III) complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433002PMC
http://dx.doi.org/10.1021/ja5116524DOI Listing

Publication Analysis

Top Keywords

343-li12-hopo ligand
12
euiii smiii
8
smiii complexes
8
ligand report
8
magnetic circular
8
circular dichroism
8
complexes
5
ligand
5
insights structure
4
structure luminescence
4

Similar Publications

High-throughput Experimentation Enables the Development of a Nickel-catalyzed Cyanation Platform for (Hetero)aryl Halides.

Chemistry

January 2025

Boehringer Ingelheim RCV GmbH & Co KG: Boehringer Ingelheim RCV GmbH und Co KG, Chemical Development, GERMANY.

A novel screening platform for the nickel-catalyzed cyanation of (hetero)aryl halides relying on the use of air-stable Ni(COD)DQ at low loading is reported. Through high-throughput experimentation (HTE), various ligand and solvent combinations are systematically explored, allowing the fast identification of suitable conditions. This standardized workflow serves as an excellent starting point for selecting other competent nickel precatalysts and for further optimization of reluctant substrates.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

Aminobenzoic Acid Covalently Modified Polyoxotungstates Based on {XW} Clusters with Proton Conductivity Property.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.

View Article and Find Full Text PDF

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

In this Frontier Article, the work carried out within our research group in Bologna in the field of surface decorated metal carbonyl clusters will be outlined and put in a more general context. After a short Introduction, clusters composed of a metal carbonyl core decorated on the surface by metal-ligand fragments will be analyzed. Both metal-ligand fragments behaving as Lewis acids and Lewis bases will be considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!